

Federal Board SSC-I Examination Model Question Paper Mathematics (Curriculum 2022-23)

 \bigcirc

(1)

 $(\tilde{2})$

3

(4)

(5)

6

(7)

(8)

(9)

Section - A (Marks 15)

Time Allowed: 20 minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. **Deleting/overwriting** is not allowed. Do not use lead pencil.

ROLL NUMBER Version No. 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\overline{1}$ (1)1 (1)1 1 (1)(1)1 $\widecheck{2}$ \Im $\overset{\smile}{2}$ $(\tilde{2})$ $(\overline{2})$ $(\tilde{2})$ $\overline{2}$ 2 3 4 5 6 7 2 (2) 3 3 3 3 3 3 (4) (5) (6) $\check{4}$ $\check{4}$ $\check{4}$ $\overline{4}$ (4) (5) (6) 4 4 5 6 5 6 5 (5) (5) 5 6 6 6 $\overrightarrow{7}$ (7) (8) (7) (8) (7) (8) $(\widetilde{7})$ (8) $\overline{7}$ $\overline{7}$ (7)8 $\widecheck{8}$ (8) (8) (9) (9) (9) (9) 9 (9) (9) (9) (9)

Candidate Sign.

Invigilator Sign.

Q1. Fill the relevant bubble against each question. Each part carries one mark.

Sr no.	Question	Α	В	С	D	Α	В	С	D
i.	The radical form of $x^{-\frac{3}{2}}$ is:	$\sqrt[3]{x^2}$	$\frac{1}{\sqrt{x^3}}$	$\sqrt{x^3}$	$\frac{1}{\sqrt[3]{x^2}}$	0	0	0	0
ii.	Which of the given options represents the scientific notation of 0.25^2 ?	625×10^{-4}	62.5×10^{-3}	$6.25 \times 10^{-2} \qquad 0.625 \times 10^{-1}$		0	0	0	0
iii.	If $A = \{2,4,6\}$ and $B = \{0,1\}$, then find number of elements in $A \times B$.	5	6 8		9	0	0	0	0
iv.	What is the least common multiple of $7x - 6xy$ and $5xy^3 - 3x^2$?	$(7-6y) \times (5x^3-3x)$	$(7x - 6xy) \times (5y^3x - 3x^2)$	x(7-6y)	$\begin{array}{l} x(7-6y) \times \\ (5y^3-3x) \end{array}$	0	0	0	0
v.	Solution of inequality $-2x - \frac{1}{2} \le \frac{3}{2}$ is:	<i>x</i> > -1	<i>x</i> < -1	$x \ge -1$	$x \leq -1$	0	0	0	0
vi.	What is the radian measure of 15°50' ?	$\frac{19\pi}{216}$	$\frac{19\pi}{36}$	$\frac{19\pi}{180}$	$\frac{216\pi}{19}$	0	0	0	0
vii.	If a navigator gives bearing 0°, in which direction should he travel?	North	South	East	West	0	0	0	0
viii.	In the figure, if $\alpha = \beta$ then what is the value of <i>b</i> ?	cd a	c ad	ad c	$\frac{ac}{d}$	0	0	0	0

ix.	What is the value of $-3 - 3 \tan^2 \theta$ in a single trigonometric function?	3cosec²θ	$-3 \sec^2 \theta$	$3 \sec^2 \theta$	-3cosec²θ	0	0	0	0
x.	Which of the following points is the intersection of the angle bisectors of a triangle?	circumcenter	orthocenter	incentre	centroid	0	0	0	0
xi.	Each of the internal angle of a regular hexagon is:	60 ⁰	72°	108°	120°	0	0	0	0
xii.	Locus of points equidistant from $P(5,4)$ and $Q(5,-6)$ is:	x = 0	<i>x</i> = 5	<i>y</i> = -1	<i>y</i> = 1	0	0	0	0
xiii.	The mean of 11 numbers is 7. One of the numbers 13 is deleted. What is the mean of the remaining 10 numbers?	7.7	6.4	6.0	5.8	0	0	0	0
xiv.	What is the probability of picking a king from well-shuffled 52 playing cards?	<u>1</u> 52	$\frac{1}{13}$	$\frac{4}{13}$	$\frac{1}{26}$	0	0	0	0
XV.	A fair coin is tossed twice, then the frequency of appearing head twice is:	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{3}{4}$	0	0	0	0

Federal Board SSC-I Examination Model Question Paper Mathematics

(Curriculum 2022-23)

Time allowed: 2.40 hours

Total Marks: 60

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the **E-sheet**. Write your answers on the allotted/given spaces.

Q.2	Question	Marks		Question	Marks
i	Simplify the expression	4		If $X = \{1, 3, 9\}$ $Y = \{3, 5, 7\}$ and	4
	$\left[(125)^{\frac{1}{3}} \times (25)^{\frac{1}{2}} + (64)^{\frac{2}{3}} \times 6 + (8)^{\frac{2}{3}} \right]^{\frac{-2}{3}}$		OR	$Z = \{3,5,7,9,11\} \text{ then using Venn}$ diagram, prove that $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$	
ii.	The attached figure shows the position of three points <i>A</i> , <i>B</i> , and <i>C</i> . State the bearing of: <i>B</i> from <i>A</i> ; <i>A</i> from <i>B</i> ; <i>B</i> from <i>C</i> , and <i>C</i> from <i>B</i> . B = B = B = B = C, and C = C = C = C	4	OR	 For A = {1,2,3}, B = {3,4} (a) List all the ordered pairs of the Cartesian Product A × B, (b) List all the ordered pairs of a relation R = {(x, y) x∈A, y∈B ∧ x < y}, (c) Find domain and range of the relation R. 	4
iii.	Bani Gala had a population of 10,000 people in the year 2015. The population has been growing exponentially at a rate of 2.5% per year. Using the exponential growth formula $P(t) = P_0 e^{rt}$, apply laws of logarithm to determine the year when population reaches up to 25,000.	4	OR	Find equation of the family of lines passing through a point (5,2) and through the intersection of lines x + 2y - 10 = 0 and 2x + y - 2 = 0.	4
iv.	Solve the linear equation $\frac{1}{3}(x-2) + \frac{2-3x}{2} = \frac{x+5}{6}$	4	OR	Simplify $\frac{5}{5+p-18p^2} - \frac{2}{2+5p+2p^2}$	4
V.	Prove that: $\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} = 2 + 2 \cot^2 x$	4	OR	In the given figure, find area of a regular hexagonal roof of a building shown below.	4

SECTION – B (Marks 36)

 $(9 \times 4 = 36)$

vi.	A hiking trail rises 500 meters over a horizontal distance of 2 kilometers. What is the slope of a trail? Express the slope in percentage.	4	OR	A decagonal die labeled 4,4,4,4,5,5,6,7,8,8 is rolled once. Find the probability of an odd number, an even number, and a factor of 12.	4
vii.	A triangular garden <i>XYZ</i> shows corners $X(-4, -4)$, $Y(12,0)$ and $Z(4,8)$ geometrically. Find locus of the corners equidistant from <i>XZ</i> and <i>YZ</i> .	4	OR	Given the equation of a line y = 4x - 2 and a point (1, 2), how would you determine the equation of a line that passes through this point and is perpendicular to the given line? Express your final answer in the form y = mx + c	4
viii.	In the adjacent similar figures, $ \underbrace{F_{t}}_{t} $ $ \underbrace{F_{t}}_{x} $ $ F$	4	OR	A fair die is rolled 75 times and 5 appears up 20 times, what is the relative frequency of appearing any number up except 5.	4
ix.	Find the HCF of the polynomials $x^{3} + 2x^{2} - 4x - 8$ and $2x^{3} + 7x^{2} + 4x - 4$	4	OR	In a 50-over cricket match, average runs scored by Pakistani team for different sessions of the innings is given below: The score in 01 to 10 overs: 12 runs per over, 11 to 35 overs: 06 runs per over, 36 to 50 overs: 13 runs per over. Find average runs scored by the team in an innings.	4

SECTION – C (Marks 24)

($3 \times 8 = 24$) Note: Attempt all questions. Marks of each question are given.

Q. No.	Question	Marks		Question	Marks		
Q3	For what value of k , the expression	8		Slopes of the sides of a triangle <i>ABC</i> are $\frac{3}{2}$	8		
	$y^4 + 4y^2 + k + \frac{6}{y^2} + \frac{4}{y^4}$		OR	given as $m_1 = \frac{3}{2}$, $m_2 = -\frac{3}{2}$ and $m_3 = 2$.			
	becomes a perfect square.			Find interior angles of the triangle ABC.			
Q4	The height <i>H</i> of the tide at a coastal	8		Transform $-2x + 5y = 10$ in the following:	8		
	location varies over a day, modeled			(i) Two points form			
	by $H = H_o + A \cdot sin\left(\frac{2\pi t}{T}\right)$, with			(ii) Two Intercepts form(iii) Symmetric form and(iv) Normal form			
	H_o : the average tide height,						
	A: the amplitude of tidal variation,		OR	(ii) Two Intercepts form(iii) Symmetric form and(iv) Normal form			
	t: the time in hours, and		on				
	<i>T</i> : the period of tidal cycle in hours.						
	If $H_o = 2m, A = 1m, T = 24hours$						
	use trigonometry to find the tide's						
	height at $t = 0, 6, 18$ hours.						

Q5	Construct altitudes of triangle ABC with aids measures $m\overline{AB} = 4.9 m$	8		The	The grouped data for a company's monthly				
	with side measures $mAB = 4.8cm$, $m\overline{BC} = 3.5cm$, $m\overline{AC} = 4cm$ and			expe					
	show that the altitudes are concurrent. Write down the construction steps		OR	C-I f	140 – 149 3	150 – 159 7	160 – 169 5	170 – 179 9	
	also.			Calculate the median and mode expense for 24 months.					