

## Federal Board HSSC-I Examination Model Question Paper Mathematics

(Curriculum 2022-23)

|                                                                                                                                                                               |         | RC                              | DLL N   | UMB                             | ER                    |                                 | Version No. |                |          |         | •       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|---------|---------------------------------|-----------------------|---------------------------------|-------------|----------------|----------|---------|---------|
| Section - A (Marks 20)<br>Time Allowed: 25 minutes                                                                                                                            |         | 0                               |         |                                 |                       |                                 |             |                |          |         |         |
| Section – A is compulsory. All<br>parts of this section are to be<br>answered on this page and<br>handed over to the Centre<br>Superintendent.<br>Deleting/overwriting is not | 2345678 | 2<br>3<br>4<br>5<br>6<br>7<br>8 | 2345678 | ¥<br>3<br>4<br>5<br>6<br>7<br>8 | 4<br>5<br>6<br>7<br>8 | ¥<br>3<br>4<br>5<br>6<br>7<br>8 |             | 2345678        | 2345678  | 2345678 | 2345678 |
| Candidate Sign                                                                                                                                                                | (9)     | (9)                             | (9)     | (9)                             | (9)                   | 9<br>Invig                      | ilato       | (9)<br>or Sign | (9)<br>n | (9)     | (9)     |

Q1. Fill the relevant bubble against each question. Each part carries one mark.

| Sr<br>no. | Question                                                                                                                                                                                    | Α                     | В                     | С                     | D                     | A | B | С | D |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|---|---|---|
| i.        | If $z = x + iy$ then what<br>is the real solution of<br>$(x - 3) \le 2$ ?                                                                                                                   | <i>x</i> ≤ 5          | <i>y</i> ≤ 2          | $x \leq -5$           | $y \leq -2$           | 0 | 0 | 0 | 0 |
| ii.       | If $Z = \sqrt{3} - i$ then<br>principal argument of z is<br>written                                                                                                                         | $-\frac{\pi}{6}$      | $\frac{\pi}{6}$       | $-\frac{\pi}{3}$      | $\frac{\pi}{3}$       | 0 | 0 | 0 | 0 |
| iii.      | For a square matrix <i>A</i> of<br>order $3 \times 3$ , $ A  = 9$ ,<br>$A_{21} = 3$ , $A_{22} = 3$ ,<br>$A_{23} = -1$ , $a_{21} = 1$ ,<br>$a_{23} = 2$ , what is the<br>value of $a_{22}$ ? | 2                     | 3                     | 9                     | -1                    | 0 | D | D | ۵ |
| iv.       | For a unique solution of<br>system rank of matrix A<br>must be equal to:                                                                                                                    | $A_b$                 | $A^t$                 | $ A^b $               | $ A^t $               | 0 | 0 | 0 | 0 |
| v.        | What is the A.M of 20<br>terms of an A.P with first<br>term 2 and common<br>difference 2?                                                                                                   | 20                    | 21                    | 22                    | 42                    | 0 | 0 | 0 | 0 |
| vi.       | What is the value of<br>H. M between two non-<br>zero real numbers, if<br>their A. $M = \frac{3\sqrt{2}}{2}$<br>and G. $M = 2$ ?                                                            | $\frac{8}{3\sqrt{2}}$ | $\frac{4}{3\sqrt{2}}$ | $\frac{3\sqrt{2}}{8}$ | $\frac{3\sqrt{2}}{4}$ | 0 | 0 | 0 | 0 |
| vii.      | What is the 8 <sup>th</sup> term of $(2x - \frac{1}{2x})^{12}$ ?                                                                                                                            | $198x^{-2}$           | $198x^{2}$            | $-198x^{-2}$          | $-198x^{2}$           | 0 | 0 | ۵ | 0 |

|        | 1                                                                                                                                                                                                                    |                                                                                                                                           | r                                                                                                                                         |                                                                                                          |                                                                                                                       |   |   |   |   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| viii.  | If $(n): 2^n < n!$ then<br>what is the smallest<br>possible integer for<br>which $S(n)$ is true:                                                                                                                     | 1                                                                                                                                         | 2                                                                                                                                         | 3                                                                                                        | 4                                                                                                                     | ۵ | ۵ | 0 | 0 |
| ix.    | $\frac{x^2 + 3x - 16}{x + 4} = x - 4 - \frac{?}{x + 4}$                                                                                                                                                              | 3                                                                                                                                         | -3                                                                                                                                        | 3 <i>x</i>                                                                                               | -3x                                                                                                                   | 0 | ۵ | 0 | 0 |
| x.     | If length of one side of<br>the box having volume<br>$x^3 - 2x^2 - x + 2$ is<br>(x - 2), then the<br>remaining two sides are:                                                                                        | $(x - 1)^2$                                                                                                                               | $(x + 1)^2$                                                                                                                               | $x^2 - 1$                                                                                                | <i>x</i> <sup>2</sup> + 1                                                                                             | ۵ | 0 | 0 | 0 |
| xi.    | If the dot product of<br>vector $\underline{a} = \underline{i} - 2\underline{j} + \underline{k}$<br>and $\underline{b} = \alpha  \underline{i} - \underline{j} + 2\underline{k}$ is<br>10 then value of $\alpha$ is: | 0                                                                                                                                         | 1                                                                                                                                         | 2                                                                                                        | 3                                                                                                                     | 0 | 0 | 0 | 0 |
| xii.   | If $\underline{a} = \underline{i} - 2\underline{j}$ and<br>$\underline{b} = 2\underline{j} + \underline{k}$ , then $\underline{a} \times \underline{b}$<br>is:                                                       | -2 <u>i</u> -j<br>-2 <u>k</u>                                                                                                             | -2 <u>i</u> +j<br>-2 <u>k</u>                                                                                                             | 2 <u>i – j</u> +<br>2 <u>k</u>                                                                           | -2 <u>i</u> -j<br>+2 <u>k</u>                                                                                         | 0 | 0 | 0 | 0 |
| xiii.  | Which of the vector pairs is orthogonal?                                                                                                                                                                             | $\frac{\underline{i} + 2\underline{j} - \underline{k}}{\text{and}}$ $\frac{\underline{i} + \underline{j} + \underline{k}}{\underline{k}}$ | $\frac{\underline{i} - 2\underline{j} - \underline{k}}{\text{and}}$ $\frac{\underline{i} + \underline{j} - \underline{k}}{\underline{k}}$ | $\frac{-\underline{i} + 2\underline{j} + k}{\text{and}}$ $\underline{i} + \underline{j} + \underline{k}$ | $\frac{-\underline{i} + 2\underline{j} - \underline{k}}{\text{and}}$ $-\underline{i} + \underline{j} + \underline{k}$ |   | 0 | 0 | 0 |
| xiv.   | If $cos\alpha = \frac{12}{13}$ ; $0 < \alpha < \frac{\pi}{2}$<br>and<br>$sin\beta = \frac{5}{13}$ ; $\frac{\pi}{2} < \beta < \pi$<br>then value of<br>$cos(\alpha + \beta)$ is:                                      | 1                                                                                                                                         | -1                                                                                                                                        | $\frac{144}{169}$                                                                                        | $-\frac{144}{169}$                                                                                                    | Π | 0 | D | 0 |
| XV.    | If the expression<br>$4sin5\alpha$ . $cos3\alpha$ . $cos2\alpha$ is<br>expressed as sum of three<br>sines, then two of them<br>are $sin4\alpha$ and $sin10\alpha$ .<br>The third one is:                             | sin8α                                                                                                                                     | sin6α                                                                                                                                     | sin5α                                                                                                    | sin12α                                                                                                                | 0 | 0 | 0 | D |
| xvi.   | Which of the given functions is odd?                                                                                                                                                                                 | $f(x) = x + \cos x$                                                                                                                       | $f(x) = x - \cos x$                                                                                                                       | $f(x) = x^2 + \cos x$                                                                                    | $f(x) = x + \sin x$                                                                                                   | ۵ | 0 | 0 | 0 |
| xvii.  | The period of a<br>trigonometric function<br>3 sin 3x is:                                                                                                                                                            | $\frac{\pi}{3}$                                                                                                                           | $\frac{2\pi}{3}$                                                                                                                          | $\frac{\pi}{2}$                                                                                          | $\frac{3\pi}{2}$                                                                                                      | ۵ | 0 | 0 | 0 |
| xviii. | The minimum value of $3 + 4 \sin \theta$ is:                                                                                                                                                                         | -1                                                                                                                                        | 0                                                                                                                                         | 1                                                                                                        | 7                                                                                                                     | 0 | 0 | 0 | 0 |
| xix.   | How many four-digit<br>numbers divisible by 10<br>can be formed using<br>digits 3, 5, 0, 8, 7 without<br>repeating?                                                                                                  | 12                                                                                                                                        | 24                                                                                                                                        | 48                                                                                                       | 60                                                                                                                    | 0 | 0 | 0 | 0 |
| xx.    | If DNA sequence of<br>length 8 is constructed<br>using 4 nucleotides (A,<br>C, G, T) with repetition<br>allowed, how many<br>possible sequences can<br>be formed?                                                    | 4 <sup>8</sup>                                                                                                                            | 84                                                                                                                                        | <u>8!</u><br>4! 4!                                                                                       | 4! × 8                                                                                                                | D | ۵ | D | 0 |



## Federal Board HSSC-I Examination Model Question Paper Mathematics

(Curriculum 2022-23)

Time allowed: 2.35 hours

Total Marks: 80

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the **E-sheet**. Write your answers on the allotted/given spaces.

## **SECTION – B** (Marks 48)

 $(12 \times 4 = 48)$ 

|       | $(12 \times 4 = 48)$                                                                                                                                                                                                                                        |       |    |                                                                                                                                                                                                                                                            |       |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Q.2   | Question                                                                                                                                                                                                                                                    | Marks |    | Question                                                                                                                                                                                                                                                   | Marks |  |  |
| i.    | If $z = x + iy$ then simplify the equation<br>$ z - 2i  =  \overline{z} + 3 $                                                                                                                                                                               | 4     | OR | If the angle between two vectors<br>$\underline{a} = 2\underline{i} - 3\underline{j} + 4\underline{k}$ and<br>$\underline{b} = \underline{i} + 2\underline{j} + 2\underline{k}$ is $\theta$ , then find the<br>values of $\cos \theta$ and $\sin \theta$ . | 4     |  |  |
| ii.   | Prove that<br>$\cos\left(\frac{\pi}{3} + x\right) - \sin\left(\frac{\pi}{6} - x\right) = 0$                                                                                                                                                                 | 4     | OR | Prove that<br>n-1n-1<br>$\binom{n-1n-1}{r} = \binom{n}{r}$                                                                                                                                                                                                 | 4     |  |  |
| iii.  | Find volume of the tetrahedron if<br>$a = 2\underline{i} - 3\underline{j} + \underline{k}$ , $b = \underline{i} + 2\underline{j} - \underline{k}$ and<br>$c = -3\underline{i} - \underline{j} + 5\underline{k}$ are its coterminous<br>edges.               | 4     | OR | Find the maximum and minimum<br>values of the function<br>$y = \frac{1}{5 + 6 \sin (2x + 3)}$                                                                                                                                                              | 4     |  |  |
| iv.   | If $h(x) = 7x^4 - 10x^3 + 3x^2 + 3x - 3$<br>and one zero of $h(x)$ is 1, then find<br>remaining zeros.                                                                                                                                                      | 4     | OR | In H.P if $a_3 = \frac{1}{11}$ and $a_{16} = \frac{1}{63}$ , then<br>find values of $a_1$ , $d$ and $a_{20}$                                                                                                                                               | 4     |  |  |
| v.    | Without drawing graph, find<br>amplitude, period and frequency of the<br>function $y = 3 \sin (5x + 2)$                                                                                                                                                     | 4     | OR | A force $\vec{F} = 3\underline{i} - 2\underline{j} + 5\underline{k}$ acts on a particle at point $P(3, -4, 2)$ . Find moment of the force about origin and a point $(1, -1, -1)$ .                                                                         | 4     |  |  |
| vi.   | In an arithmetic progression, sum of the<br>first ten terms is 200 and the sum up to<br>twenty terms is 1000. Find common<br>difference and the first term.                                                                                                 | 4     | OR | If A, B, and C are the angle measures<br>of a triangle such that $A + B + C = \pi$ ,<br>then prove that<br>tanA + tanB + tanC<br>= tanA tanB tanC                                                                                                          | 4     |  |  |
| vii.  | Without expansion show that:<br>$\begin{array}{ccc} x & -z & 0 \\   & 0 & y & -x  = 0 \\ -y & 0 & z \end{array}$                                                                                                                                            | 4     | OR | Prove that<br>$\frac{\sin 5x - \sin 3x}{\cos 5x + 2\cos 4x + \cos 3x} = \tan \frac{x}{2}$                                                                                                                                                                  | 4     |  |  |
| viii. | A carpenter made a set of 50 wooden<br>structures of Minar-e-Pakistan in<br>different sizes. The height of the largest<br>structure in the set was 70 cm. The<br>heights of successive smaller structures<br>were 95% of the preceding larger<br>structure. | 4     | OR | Draw the graph of<br>$y = 2 \cos x$ ; $-\pi \le x \le \pi$                                                                                                                                                                                                 | 4     |  |  |

|      |                                                                                                                                                                                                                            | 1 |    |                                                                                                                                                    |   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | <ul><li>(a) Find the height of the smallest structure in the set.</li><li>(b) Find the total height if all 50 structures were placed one on top of another.</li></ul>                                                      |   |    |                                                                                                                                                    |   |
| ix.  | Find the last two digits of a number (23) <sup>14</sup>                                                                                                                                                                    | 4 | OR | Find rank of the matrix:<br>$ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                   | 4 |
| х.   | If $z = x + iy$ and $arg(\frac{z-1}{z+1}) = \frac{\pi}{2}$ , then<br>show that $x^2 + y^2 = 1$                                                                                                                             | 4 | OR | Find the value of <i>r</i> , if<br>$P_{r+6}^{56}: P_{r+3}^{54} = 30800: 1$                                                                         | 4 |
| xi.  | Use Binomial Theorem to find the remainder when 5 <sup>99</sup> is divided by 13.                                                                                                                                          | 4 | OR | Find roots of the cubic polynomial<br>$P(x) = 3x^3 - 5x^2 - 11x - 3$                                                                               | 4 |
| xii. | If $A = \begin{bmatrix} x & 0 \\ y & 1 \end{bmatrix}$ , then show that<br>$\begin{array}{c} y & 1 \\ x^n & 0 \\ A^n = \underbrace{\begin{bmatrix} y(x^n-1) \\ (x-1) \end{bmatrix}}_{(x-1)} 1 \end{bmatrix}, n\epsilon z^+$ | 4 | OR | Apply the principle of Mathematical<br>Induction to prove that $7^{2n} + 7$ is<br>divisible by 8 for all positive integral<br>values of <i>n</i> . | 4 |

## **SECTION – C** (Marks 32)

$$(4 \times 8 = 32)$$

Note: Attempt all questions. Marks of each question are given.

| Q.<br>No. | Question                                                                                                                                                                              | Marks |    | Question                                                                                                                                                                                                                                                                                                                                                                                                              | Marks |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Q3        | <ul> <li>(a) Factorize x<sup>3</sup> - x<sup>2</sup> + 4x - 12</li> <li>(b) Solve x<sup>3</sup> - x<sup>2</sup> + 4x - 12 = 0<br/>and identify real and complex<br/>roots.</li> </ul> | 8     | OR | If $\underline{a} = 2\underline{i} - \underline{j} + 3\underline{k}$ , $\underline{b} = 3\underline{i} + 2\underline{j} + 4\underline{k}$ and<br>$\underline{c} = \underline{i} + 3\underline{j} - 5\underline{k}$ , then verify that<br>$\underline{a} \cdot \underline{b} \times \underline{c} = \underline{b} \cdot \underline{c} \times \underline{a} = \underline{c} \cdot \underline{a} \times \underline{b}$ . | 8     |
| Q4        | If x is very small such that its square<br>and higher powers can be neglected,<br>then show that<br>$\frac{(8+3x)^{\frac{2}{3}}}{(2+3x)\sqrt{4-5x}} \approx 1 - \frac{5x}{8}$         | 8     | OR | Prove the fundamental law of trigonometry $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$<br>where $\alpha$ and $\beta$ be any two real angles.                                                                                                                                                                                                                                              | 8     |
| Q5        | Solve the following system of non-<br>homogeneous linear equations by<br>Gaussian Elimination Method:<br>2x - 3y + 5z = 2,<br>x + 4y - 2z = 1,<br>4x + 5y + z = 4                     | 8     | OR | A Ferris wheel with a radius of 25 meters<br>completes one full revolution in 4 minutes.<br>Calculate the frequency of the Ferris wheel's<br>rotation, the speed of a passenger at the edge<br>of the wheel, and the time it takes for the<br>passenger to travel from the bottom to the top<br>of the wheel.                                                                                                         | 8     |
| Q6        | Find sum of the series<br>(a) $\sum_{i=1}^{n} \frac{i}{7^{i}}$ and (b) $\sum_{i=1}^{\infty} \frac{i}{7^{i}}$                                                                          | 8     | OR | <ul> <li>Find the number of ways to select 3 balls from a collection of 4 orange, 5 red, and 6 green balls, such that:</li> <li>(a) All balls are of different colors.</li> <li>(b) All balls are of the same color.</li> <li>(c) No ball is red.</li> <li>(d) Exactly one ball is green.</li> </ul>                                                                                                                  | 8     |