FBISE PRACTICAL BASED ASSESMENT (PBA) CHEMISTRY HSSC-I

Guidelines/instructions for teachers/paper setters:

- i. There will be two Sections in PBA paper. In Section-A there will be one question having parts in it. Similarly, in Section-B there will be one question having parts in it.
- ii. In Section-A, Question No. 1 will be based only on one experiment taken from Part-I of the list of practicals.
- iii. In Section-B, Question No. 2 will be based on multiple experiments taken from Part-II of the list of practicals.
- iv. Ratio of Part-I practicals is 60% while ratio of Part-II practicals is 40% in the PBA paper.
- v. Draw diagram(s) if asked for.
- vi. In the new pattern of practicals i.e. Practical Based Assessment (PBA), there will be no marks for practical note books and viva voce. However, students may record procedures, observations, apparatus and calculation etc on any type of plain papers/work sheets / practical folder for their future memory of all aspects of practical performance in order to attempt the PBA Examination amicably.
- vii. It may be noted that performance of all the prescribed practicals is mandatory in the laboratories during the whole academic year and only those students will be able to attempt the PBA who will have performed the practicals in the laboratories as per requirement of each practical.

List of Practicals HSSC-I

Chemistry

	Part-I (60% of practical marks 9 Marks)
1.	The given solution contains 6gms of Na ₂ CO ₃ dissolved per dm ³ . Determine the
	Percentage Purity of the Sample Solution by Volumetric Method
2.	Determine the Value of X by Volumetric Method in the Given Sample of 6.3g of
	(COOH)₂. XH₂O Dissolved per dm³.
3.	Standardize the Given Solution of KMnO ₄ and Calculate the Volume of KMnO ₄
	Required for Preparing 1 dm ³ of 0.01M KMnO ₄ Solution Volumetrically.
4.	Determine the Percentage Composition Volumetrically of a Solution Mixture of
	K ₂ C ₂ O ₄ and K ₂ SO ₄ .

	Part-II (40% of practical marks 6 Marks)
1	Separate the Given Mixture of Inks by Paper Chromatography
2	Separate Lead and Cadmium in a mixture solution by Paper Chromatography.
3	Purify a Given Sample of Sodium Chloride by Passing HCl Gas. (Application of common ion effect)
4	Determine the Heat of Neutralization of NaOH and HCl

FEDERAL BOARD OF INTERMEDIATE AND SECONDARY EDUCATION ISLAMABAD

Subject: Chemistry HSSC-I
Paper: Practical Based Assessment (PBA)

Total Marks: 15 Time: 60 minutes

						-		
	+		7	Ro	II Num	ıber		
	7	0	0	0	0	0	0	0
		1	1	1	1	1	1	1
		2	2	2	2	2	2	2
		3	3	3	3	3	3	3
		4	4	4	4	4	4	4
Name of Examination:	_	(5)	(5)	(5)	(5)	(5)	(5)	(5)
		6	6	6	6	6	6	6
Centre Code:	_	7	7	7	7	7	7	7
Centre Code:		8	8	8	8	8	8	8
Date:	_	9	9	9	9	9	9	9
Sig. of Dy. Supdt.	_							

Instructions for students:

- 1. Carefully read all the questions and then answer them at the specified spaces.
- 2. Use black or blue ball point.
- 3. Marks are mentioned against all questions in the brackets [].
- 4. Students may use the last page for rough work (if required).
- 5. Answer the questions as per given instructions.

MODEL PAPER HSSC-I CHEMISTRY

Note: Attempt all questions and answer the questions within the provided spaces.

SECTION-A

Q 1: Purpose of this experiment is to determine the percentage purity of the sample solution by volumetric method when the given solution contains 6 gms of Na₂CO₃ dissolved per dm³.

Apparatus used:

Burette, pipette, funnel, conical, flask, beakers, iron stand.

Chemical used:

Methyl orange, Na₂CO₃, 0.1M HCl,

Distilled water, solution of 6g of Na₂CO₃ in 1dm³

10cm³ of Na₂CO₃ is added to conical flask and HCl in the burette.

See on the figure given below and record the observations in table.

Titrat	tion 1	Titrat	tion 2	Titration 3			
Initial reading	Final reading	Initial reading	Final reading	Initial reading	Final reading		
	=27 ==28 ==28 ===29 =======================		======================================	0	=27 =28 ================================		

i. Observ	vation Table:			[02]
Exp No.	Initial Reading	Final Reading Volume of HCl used		
1				
2				
3				
Mean vol	ume of HCl used=	cm ³		
ii.) When	acid is added to N_0	$a_2 CO_3$, the colour changed from	to	at
the end p	oint.			[01]
iii.	What is the purpos	se of using methyl orange :		[01]
	,Qn			

iv.	Chemical	Equations:
	Cilcilical	Equations.

Write Overall Reaction: [01]

v.) Calculations:

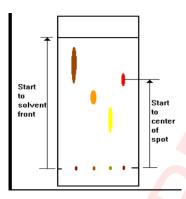
Find n_1 of Na_2CO_3 and n_2 of HCl from chemical equation

 $n_1 = \dots \qquad \qquad n_2 = \dots \qquad \qquad [01]$

- You are advised to show full working in all parts of calculations.
 - a. Calculate the molarity of Na₂CO₃ by using formula:

$$\frac{M1V1}{n1} = \frac{M2V2}{n2}$$
 [01]

- b. By using your answer from part "a" Calculate the strength in gdm^{-3} of Na_2CO_3 . [01]
- c. Using your answer from part "b" calculate percentage purity of Na₂CO₃. [01]

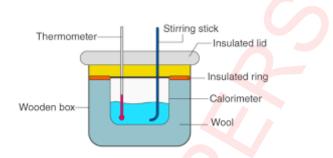

Result:

Percentage purity of Na₂CO₃ =

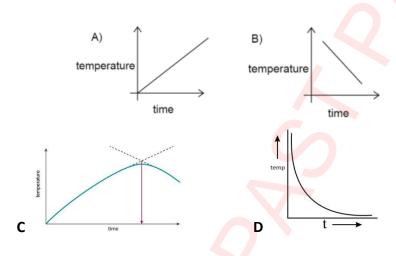
SECTION-B

Q 2: Encircle the correct option.

Chromatogram of a mixture of ink is shown below:



Height of the solvent front is 10cm, distance covered by yellow ink is 4.7cm. Rf value of yellow ink is: [01]


- A. 4.7cm
- B. 0.47cm
- C. 47cm
- D. 10cm
- i.) Rock salt can be purified by common ion effect which one of the following will give precipitates.
- A. Rock salt solution +HNO₃
- B. Rock salt solution +HCl
- C. Rock salt solution +H₂SO₄
- D. Rock salt solution +KCl
- iii.) Lead and Cadmium compounds form colorless solution. They can be separated by paper chromatography, which one of the following locating agent can be used to identify the presence of Lead and Cadmium? [01]
- A. Ninhydrin solution
- B. HCl solution
- C. H₂S solution
- D. HBr solution
- iv.) When we add aqueous solution of NaCl to a solution of AgCl, solubility of AgCl decrease. This is due to: [01]
- A. Solubility product
- B. Common ion effect
- C. Leveling effect
- D. Electro lighting effect
- v.) Heat of Neutralization of NaOH and H₂SO₄ can be determined by experiment: Heat of Neutralization of this reaction will be: [01]
- A. -57.3 Kj mol⁻¹

- B. -114.6 Kj mol⁻¹
- C. 57.3 Kj mol⁻¹
- D. 114.6 Kj mol⁻¹

vi.)

Heat of Neutralization of NaOH and HCl can be determined by the apparatus shown, which one of the following graph can be used to calculate heat of neutralization. [01]

ROUGH WORK

