Roll No:


Sig. of Candidate: $\qquad$
$\qquad$

## Federal Board SSC-II Examinations <br> Model Question Paper Mathematics

(Science Group) (Curriculum 2006)

## SECTION - A

Time allowed: 20 minutes
Note: Section-A is compulsory. All parts of this section are to be answered on the separately provided OMR Answer Sheet and should be completed in the first 20 minutes and handed over to the Centre Superintendent. Do not use lead pencil.

## Q. 1 Choose the correct answer by filling the relevant bubble for each question on the

OMR Answer Sheet. Each part carries one mark.
(1) Which of the following types represents $(x-3)(x+3)=0$ ?
A. Quadratic equation
B. Linear equation
C. Cubic equation
D. Pure quadratic equation
(2) For what value of $k, 2 x^{2}+k x+3=0$ has equal roots?
A. $2 \sqrt{6}$
B. 24
C. $\pm 2 \sqrt{6}$
D. $\pm 6 \sqrt{2}$
(3) If $z \propto(w+3)$ and $w=3, z=6$. What is value of $2 z$ when $w=9$ ?
A. 12
B. 24
C. 6
D. 4.5
(4) If $\alpha$ and $\beta$ are the roots of $2 x^{2}-6 x-4=0$. What is value of $\alpha^{2} \beta^{3}+\alpha^{3} \beta^{2}$ ?
A. -12
B. 12
C. 6
D. -6
(5) Which of the following are the partial fractions of $\frac{x^{3}}{x^{3}+1}$ ?
A. $\quad \frac{A x^{3}}{x+1}+\frac{B x+C}{x^{2}-x+1}$
B. $1+\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1}$
C. $\quad 1+\frac{A}{x+1}+\frac{B x+C}{x^{2}-x-1}$
D. $1+\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1}$
(6) Which of the expressions shows the shaded region?
A. $A \cap B^{\prime}$
B. $A^{\prime} \cap B$
C. $A \cup B^{\prime}$
D. $A^{\prime} \cup B$

(7) If $\bar{x}=7, \sum f=30$ and $\sum f x=120+3 k$ then value of $k$ is
A. 30
B. -30
C. -11
D. 11
(8) If $\sin \theta=\frac{4}{5}$ and $\sec \theta=\frac{5}{3}$ then what is value of $\tan \theta$ ?
A. $\frac{2 \sqrt{3}}{5}$
B. $\frac{\sqrt{34}}{3}$
C. $\frac{4}{3}$
D. $\frac{3}{4}$
(9) What is the radius of circle if an arc of 10 cm subtends an angle of $60^{\circ}$ ?
A. $\frac{30}{\pi} \mathrm{~cm}$
B. $\quad \frac{\pi}{30} \mathrm{~cm}$
C. $\frac{10800}{\pi} \mathrm{~cm}$
D. $\frac{1}{6} \mathrm{~cm}$
(10) What is the value of $m \angle A O B$ in the adjoining figure of a hexagon?
A. $\quad 360^{\circ} \div 45^{\circ}$
B. $\quad 360^{\circ} \div 60^{\circ}$
C. $\quad 360^{\circ} \div 30^{\circ}$

(11) What is the elevation of Sun if a pole of $6 m$ high casts a shadow of $2 \sqrt{3} m$ ?
A. $30^{\circ}$
B. $45^{\circ}$
C. $\quad 60^{\circ}$
D. $90^{\circ}$
(12) What is the value of $x$ if $m \overline{A B}=m \overline{C D}=6 c m, m \overline{O E}=2 x$ and $m \overline{O F}=3 x-1$ ?
A. 1
B. -1
C. $\frac{7}{3}$
D. 3

(13) In the adjoining figure, $m \angle P Q R=30^{\circ}$. What is the value of $m \angle P O R$ ?
A. $130^{\circ}$
B. $150^{\circ}$
C. $\quad 60^{\circ}$
D. $75^{\circ}$

(14) In the drawn figure, what is value of $m \angle B C D$ ?
A. $165^{\circ}$
B. $155^{\circ}$
C. $80^{\circ}$
D. $130^{\circ}$

(15) If $f: B \rightarrow A$, then which of the following represents a/an?
A. Onto function
B. Bijective function
C. Injective function
D. Into function


Federal Board SSC-II Examination
Mathematics Model Question Paper
(Science Group) (Curriculum 2006)
Time allowed: 2.40 hours
Total Marks: 60
Note: Sections ' $B$ ' and ' $C$ ' comprise pages 1-2 and questions therein are to be answered on the separately provided Answer Book. Write your answers neatly and legibly.

## SECTION - B (Marks 36)

Q. 2 Attempt ALL parts. Each part carries (04) marks.
i. Solve the equation $3 x^{2}+4 x-5=5 x^{2}+2 x+1$.

## OR

Solve the equation $\frac{x-1}{x+3}+\frac{x+3}{x-1}=\frac{13}{6}$
ii. Show that the equation $x^{2}+(m x+c)^{2}=a^{2}$ has equal roots if $c^{2}=a^{2}\left(1+m^{2}\right)$

## OR

If $\theta$ and $\varphi$ are the roots of $y^{2}-7 y+9=0$, then form an equation whose roots are $2 \theta$ and $2 \varphi$.
iii. $\quad P$ is directly proportional to $Q$ and $P=12$ when $Q=4$. Write an equation connecting $P$ and $Q$ and find the value of $P$, when $Q=8$.

## OR

If $a: b=c: d=e: f$, then show that $\frac{b^{2}+d^{2}+f^{2}}{a b+c d+e f}=\sqrt[3]{\frac{b d f}{a c e}}$
iv. If $U=\{1,2,3, \ldots, 10\}, A=\{2,4,6\}$ and $B=\{1,3,5\}$, then verify that $(A \cap B)^{\prime}=A^{\prime} U B^{\prime}$

## OR

If $A=\{1,2,3\}$ and $B=\{2,4,6\}$, then find domain and range of
$R=\{(x, y) \mid y=2 x\}$
v. The table shows the number of goals scored by a soccer team in 10 matches:

| 4 | 1 | 2 | 1 | 0 | 0 | 3 | 2 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Find values of Mean, Median and Mode.

## OR

The salaries of seven employees in rupees are as follows:

$$
43500,46400,50000,48500,44200,47700,41900
$$

Find standard deviation and variance of the salaries.
vi. If $\tan \theta=\frac{4}{3}$ and $\sin \theta<0$. Find values of $\sec \theta$ and $\operatorname{cosec} \theta$ and show that $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$.

## OR

Prove that $\frac{\sin \theta}{1+\cos \theta}+\cot \theta=\operatorname{cosec} \theta$.
vii. In $\triangle P Q R, m \overline{Q R}=6 \mathrm{~cm}, m \overline{P R}=2 \sqrt{2} \mathrm{~cm}$ and $\angle P R Q=135^{\circ}$. Draw perpendicular from $P$ to $\overline{Q R}$, to meet $\overline{Q R}$ produced at $S$ and find the numeric value of $m \overline{R S}$. Moreover, by using $(m \overline{P Q})^{2}=(m \overline{Q R})^{2}+(m \overline{P R})^{2}+2(m \overline{Q R})(m \overline{R S})$ find the numeric value of $m \overline{P Q}$.

## OR

In triangle ABC with obtuse angle at A , if $\overline{C D}$ is an altitude on $\overline{B A}$ produced and $m \overline{A C}=m \overline{A B}$ then prove that $\overline{B C}^{2}=2(\overline{A B})(\overline{B D})$.
viii. In the figure, given that $\overline{O A}=8 \mathrm{~cm}$ and $m \angle O C B=30^{\circ}$. Find the numeric values of $m \angle A O B$ and $m \overline{A C}$

## OR


$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are four points on a circle with centre O . Given that POC is a diameter of the circle. Find the numeric values of $x, y$ and $m \angle A O B$ with reasons to justify your steps.

ix. Prove that if a line is drawn perpendicular to a radial segment of a circle at its outer end point, it is tangent to the circle at that point.

## OR

Circumscribe a circle about a triangle ABC with sides $\overline{A B}=6 \mathrm{~cm}, \overline{B C}=4 \mathrm{~cm}$, $\overline{A C}=4 \mathrm{~cm}$ and measure its radius.

## SECTION - C (Marks 24)

Note: Attempt ALL questions. Each question carries (08) marks.
Q. 3 The area of a rectangle is $48 \mathrm{~cm}^{2}$. If length and width of each are increased by 4 cm . the area of larger rectangle is increased by $12 \mathrm{~cm}^{2}$. Find the length and width of the original rectangle.

## OR

Resolve $\frac{x^{2}}{(1-\mathrm{x})\left(1+x^{2}\right)}$ into partial fractions.
Q. 4 Using theorem of componendo-dividendo, find the value of $\frac{x-6 a}{x+6 a}-\frac{x+6 b}{x-6 b}$, if $x=\frac{12 a b}{a-b}$

## OR

Solve the following equation by using the componendo-dividendo property
$\frac{(x+5)^{3}-(x-3)^{3}}{(x+5)^{3}+(x-3)^{3}}=\frac{13}{14}$
Q. 5 Prove that if two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.

OR
In a parallelogram ABCD , prove that $(A C)^{2}+(B D)^{2}=2\left[(A B)^{2}+(B C)^{2}\right]$

# Federal Board of Intermediate and Secondary Education <br> SSC-II Examinations <br> Model Question Paper Mathematics 

(Curriculum 2006)
Alignment of Questions with Student Learning Outcomes

| Sec-A | Q 1 | Contents and Scope | Student Learning Outcomes * | Cognitive Level ** | Allocated Marks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | i | 8.1 Quadratic Equation | Define quadratic equation. | K | 1 |
|  | ii | 9.3 Nature of Roots of a Quadratic Equation | iii) Discuss the nature of roots of a quadratic equation through discriminant. | K | 1 |
|  | iii | 10.1 Ratio, Proportions and Variations. | i) Define ratio, proportions and variations <br> (direct and inverse) | U | 1 |
|  | iv | 9.4 Symmetric Functions of Roots of a Quadratic Equation. | ii) Evaluate a symmetric Function of the roots of a quadratic equation in terms of its coefficients. | U | 1 |
|  | v | 11.2 Resolution of Fraction into Partial Fractions. | Resolve an algebraic fraction into partial fractions when its denominator consists of nonrepeated linear factors. | U | 1 |
|  | vi | 12.1.3 Venn Diagram | i) Use Venn diagram to represent <br> - union and intersection of sets, <br> - complement of a set. | U | 1 |
|  | vii | 13.3 Measures of Central Tendency | i) Calculate the arithmetic mean by definition (for ungrouped data) | U | 1 |
|  | viii | 16.3 Trigonometric Ratios | vi) Find the values of remaining trigonometric ratios if one trigonometric ratio is given. | K | 1 |
|  | ix | 16.2 Sector of a circle | i) Establish the rule $l=r \theta$, where $r$ is the radius of the circle, $l$ the length of circular arc and $\theta$ the central angle measured in radians. | U | 1 |


|  | x | 30.2 Circles attached to polygons | Circumscribe a regular hexagon about a given circle. | U | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | xi | 16.5 Angle of elevation and Depression. | ii) Solve real life problems involving angle of elevation and depression | U | 1 |
|  | xii | 25.1 Chords of a Circle | Apply the theorem stated as: iv) If two chords of a circle are congruent then they will be equidistant from the centre. | A | 1 |
|  | xiii | 26.1 Tangent to a Circle | Apply the theorem stated as: <br> iii) "The two tangents drawn to a circle from a point outside it, are equal in length" to solve appropriate problems. | A | 1 |
|  | xiv | 28.1 Angle in a Segment of a Circle | Apply the theorem stated as: <br> i) "The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc" to solve appropriate problems. | A | 1 |
|  | xv | 12.3 Function | ii) To demonstrate the following: <br> - Into function <br> - One-one function <br> - Injective function <br> - Surjective function <br> - Bijective function | K | 1 |
| Q2 | i | 8.2 Solution of Quadratic Equations <br> OR <br> 8.4 Equations Reducible to Quadratic Form | i) Solve a quadratic equation in one variable by <br> - Factorization, <br> - Completing square OR <br> ii) Solve the equations of the type $a p(x)+\frac{b}{p(x)}=c$ | U+U | 4+4 |
|  | ii | 9.1 Nature of the Roots of a Quadratic Equation <br> OR <br> 9.5 Formation of Quadratic Equation | iv) Determine the nature of roots of a given quadratic equation and verify the result by solving the equation. <br> OR <br> Establish the formula, | U+U | 4+4 |


|  |  | $x^{2}-($ Sum of roots $) x+$ (Product of roots) $=0$, to find a quadratic equation from the given roots. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| iii | 10.1 Ratio, Proportion and Variation. <br> OR <br> 10.4K-Method | i)Define ratio, proportions and variations (direct and inverse) OR <br> i) Use K-Method to prove conditional equalities involving proportions. | U+K | 4+4 |
| iv | 12.1.2 Properties of Union and Intersection OR 12.3 Function | iv) De Morgan's Laws <br> OR <br> Define function and identify its domain, co-domain and range. | K+K | 4+4 |
| v | 13.3 Measures of Central Tendency <br> OR <br> 13.4 Measures of Dispersion | i) Calculate mean, median and mode for ungrouped data. <br> OR <br> Measure range, variance and standard deviation. | U+U | 4+4 |
| vi | 16.3 Trigonometric Ratios <br> OR <br> 16.4 Trigonometric Identities | v) Recognize the signs of trigonometric ratios in different quadrants <br> vi) Find the values of remaining trigonometric ratios if one trigonometric ratio is given. <br> OR <br> Prove the trigonometric identities and apply them to show different trigonometric relations. | U+U | 4+4 |
| vii | 24.1 Projection of a Side of a Triangle | Prove the following theorem along with corollaries and apply it to solve the appropriate problems. <br> i) In an obtuse-angled triangle, the square on the side opposite to the obtuse angle is equal to the sum of the squares on the sides containing the obtuse angle together with twice the rectangle contained by one of the sides, and the projection on it of the other. | A+A | 4+4 |


|  | viii | 26.1 Tangent to a Circle <br> OR <br> 27.1 Chords and arcs | Apply the theorem stated as: <br> iii) "The two tangents drawn to a circle from a point outside it, are equal in length" <br> to solve appropriate problems. <br> OR <br> Apply the theorem stated as: "The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc" to solve appropriate problems. | A+A | 4+4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ix | 26.1 Tangent to a Circle <br> OR <br> 30.2 Circles attached to Polygons | i) If a line is drawn perpendicular to a radial segment of a circle at its outer end point, it is tangent to the circle at that point. <br> OR <br> i) Circumscribe a circle about a given triangle. | K+K | 4+4 |
| Q 3 |  | 9.7 Simultaneous Equations OR 11.2 Resolution of Fraction into Partial Fractions | Solve the real-life problems leading to quadratic equations. <br> OR <br> Resolve an algebraic fraction into partial fractions when its denominator consists of nonrepeated quadratic factors. | U+U | 8+8 |
| Q 4 |  | 10.2 Theorems on Proportion | Apply theorem of componendodividendo to find proportions. | U+K | 8+8 |
| Q 5 |  | 27.1 Chords and Arcs <br> OR <br> 24.1 Projection of a Side of a Triangle | i)If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal. OR <br> iii) In any triangle, the sum of the squares on any two sides is equal to twice the square on half the third side together with twice the square on the median which bisects the third side (Apollonius' Theorem). | K+A | 8+8 |

Federal Board of Intermediate and Secondary Education
ASSESSMENT GRID FOR MODEL QUESTION PAPER
Level: SSC-II
Subject: Mathematics
Curriculum: 2006

| Units | $\infty$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |  | 客 | 皆 |  |  |  |  |  |  | $\begin{aligned} & N \\ & 0 \\ & 0 \\ & \underline{Q} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Knowledge based | 1 i (1) | 1 ii (1) | $\begin{array}{\|c} 2 \mathrm{iii}(4) \\ 4(8) \end{array}$ |  | $\begin{aligned} & 1 \text { xv (1) } \\ & 2 \text { iv }(4) \\ & 2 \text { iv }(4) \end{aligned}$ |  | 1 viii (1) |  |  | 2 ix (4) | 5 (8) |  | 2 ix (4) | $\begin{gathered} 40 \\ \mathbf{3 0 \%} \end{gathered}$ |
| Comprehension/ Understanding based | $\begin{aligned} & 2 \text { i (4) } \\ & 2 \text { i (4) } \end{aligned}$ | $\begin{gathered} 1 \text { iv (1) } \\ 2 \text { ii (4) } \\ 2 \text { ii (4) } \\ 3(8) \end{gathered}$ | $\begin{array}{\|c} 1 \\ 1 \text { iii (1) } \\ 2 \text { iii (4) } \\ 4(8) \end{array}$ | $\begin{gathered} 1 \mathrm{~V}(\mathbf{1}) \\ 3(8) \end{gathered}$ | 1 vi (1) | $\begin{array}{\|l\|} \hline 1 \text { vii (1) } \\ 2 \mathrm{v}(4) \\ 2 \mathrm{v}(4) \end{array}$ | $\begin{aligned} & 1 \mathrm{ix}(1) \\ & 1 \mathrm{xi}(1) \\ & 2 \mathrm{vi}(4) \\ & 2 \mathrm{vi}(4) \end{aligned}$ |  |  |  |  |  | $1 \times(1)$ | $\begin{gathered} 68 \\ \mathbf{5 0 \%} \end{gathered}$ |
| Application based |  |  |  |  |  | V |  | $\begin{gathered} 2 \text { vii (4) } \\ 2 \text { vii (4) } \\ 5(8) \\ \hline \end{gathered}$ | 1 xii (1) | $\begin{array}{\|l\|} \hline 1 \text { xiii (1) } \\ 2 \text { viii (4) } \end{array}$ | 2 viii (4) | 1 xiv (1) |  | $\begin{gathered} 27 \\ 20 \% \end{gathered}$ |
| Total marks for each unit | 09 | 18 | 25 | 09 | 10 | 09 | 11 | 16 | 01 | 09 | 12 | 01 | 05 | 135 |

$>1,2,3$ etc. stands for question numbers
$>$ i, ii, iii etc. stands for part of question numbers
$>(1),(2),(3)$ etc. stands for marks of question papers

