
(0) (0) (0)
(1) (1) (1) (1)
(2) (2) (2) (2)
(3) (3) (3) (3)
(4) (4) (4) (4)
(5) (5) (5) (5)
(6) (6) (6) (6)
(7) (7) (7) 7

(9) (9) (9) (9)

Answer Sheet No. \qquad

Sign. of Candidate \qquad

Sign. of Invigilator \qquad

MATHEMATICS SSC-I
(Science Group) (Curriculum 2006)
SECTION - A (Marks 15)
Time allowed: 20 Minutes

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.
Q. 1 Fill the relevant bubble for each part. Each part carries (01) mark.

1. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ then value of A^{2} is:
A) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
B) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
D) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
2. Imaginary part of $-i(3 i+2)$ is:
A) -3
B) 3
C) -2
D) 2
3. For what value of $x, \sqrt[3]{3 x-5}=\sqrt[3]{x+1}$?
A) 3
B) 6
C) 3^{3}
D) 6^{3}
4. If $4 x=\log _{2} 64$ then value of x is:
A) 32
B) 21
C) 16
D) -16
5. What is the value of an expression $\log _{1} 27 x^{3}$?
A) 0
B) 1
C) 3
D) 4
6. Which of the following is not a polynomial?
A) $3 x+8$
B) $x^{2}+2 x+\sqrt{2}$
C) $x^{2}+2 x+\sqrt{2 x}$
D) $x^{2}+2 x+\sqrt{2} x$
7. The number of zeroes of the polynomial $x^{3}+x-3-3 x^{2}$ are:
A) 0
B) 1
C) 2
D) 3
8. What is the product of two polynomials, if their HCF is $(x-1)$ and their LCM is $\left(x^{2}-2 x+1\right) ?$
A) $(x-1)^{3}$
B) $(x-1)^{2}$
C) $x-1$
D) $x^{3}+1$
9. What is the solution set of $|x+5|=-2$?
A) $\{-7,-3\}$
B) $\{7,3\}$
C) \varnothing
D) 7

10 The perpendicular distance of the point $P(3,4)$ from y-axis is:
A) 0
B) 3
C) 4
D) 7
11. What is the length of $m \overline{A B}$ in $\triangle A B C$, if $m \angle B=m \angle C, m \overline{B C}=3 \mathrm{~cm}$ and $m \overline{A C}=4 \mathrm{~cm}$? A
A) 3
B) 4
C) 5
D) 6
12. What is the value of x in the adjoining figure:
A) $\frac{2}{3}$
B) 3
C) 6
D) $\frac{27}{2}$

13. What is the length of $\overline{Q R}$ in $\triangle P Q R$, if $\overline{P R}=2 \sqrt{2}$ and $\overline{P Q}=\overline{Q R}$?
A) 2
B) $\sqrt{2}$
C) $\sqrt{8}$
D) 4

14. What is the length of $\overline{A B}$, if area of parallelogram $A B E F$ is $63 \mathrm{~cm}^{2}$ and altitude of parallelogram $A B C D$ is 7 cm .
A) 3 cm
B) 9 cm
C) 18 cm
D) 27 cm

15. $\overline{B D}, \overline{C E}$ are two medians of the triangle ABC . If $\overline{E O}=7 \mathrm{~cm}$, then what is the length of $\overline{C E}$?
A) $(7 \times 1) \mathrm{cm}$
B) $(7 \times 2) \mathrm{cm}$
C) $(7 \times 3) \mathrm{cm}$
D) $(7 \times 4) \mathrm{cm}$

Federal Board SSC-I Examinations
Model Question Paper Mathematics
Science Group (Curriculum 2006)
Time allowed: 2.40 hours
Total Marks: 60

Note: Sections ' B ' and ' C ' comprise pages 1-2 and questions therein are to be answered on the separately provided Answer Book. Write your answers neatly and legibly.

SECTION-B (Marks 36)

Q. 2 Attempt ALL parts. Each part carries (04) marks.
(ix)

Apply Cramer's Rule to solve $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
Find values of x and y if the product $(x-i y)(3+5 i)$ is a conjugate of $(-6-24 i)$.
OR
If $\frac{1}{x}=\sqrt{7}+\sqrt{6}$ then find the values of $\left(x+\frac{1}{x}\right),\left(x-\frac{1}{x}\right)$ and $\left(x^{2}-\frac{1}{x^{2}}\right)$.
Find the value of n if $\log _{4}(64)^{n+1}=\log _{5}(625)^{n-1}$
Use factor theorem to factorize the cubic polynomial $x^{3}+5 x^{2}-2 x-24$.
OR
Find a polynomial similar to $x^{2}-5 x-14$, such that their HCF is $(x-7)$ and LCM is $\left(x^{3}-10 x^{2}+11 x+70\right)$
$\left|\frac{3 x+9}{2 x+1}\right|-9=5$ where $x \in \mathcal{R}$
OR
Solve $\frac{2}{3} \leq \frac{1+x}{6} \leq \frac{3}{4} \quad$ where $x \in \mathcal{R}$
Solve the following system of linear equations graphically.
$x+2 y=-4 ; 2 x+4 y=8$
OR
Check whether the points $P(3,3), Q(8,3)$ and $R(3,12)$ are collinear or not.

OR
Prove that any point inside an angle, equidistant from its
 arms, is on the bisector of it.

Can a table 9 feet wide (legs folded) fit through a rectangular doorway 4 feet by 8 feet? Use Pythagoras theorem to decide.
OR
Prove that in a scalene triangle, the angle opposite to the largest side is
 of measure greater than 60°.

In $\triangle A B C$ (shown in the figure), $\overline{A X}$ bisects $\angle A$. If $m \overline{A C}=4 \mathrm{~cm}, m \overline{A B}=5 \mathrm{~cm}$ and $m \overline{B C}=8 \mathrm{~cm}$ Find the values of x and y.

SECTION-C (24Marks)

Note: Attempt ALL questions. Each question carries (08) marks.

Q3. If $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ then show that $(A B)^{-1}=B^{-1} A^{-1}$. OR

Prove that $\frac{x}{x^{2}-x-2}-\frac{1}{x^{2}+5 x-14}-\frac{2}{x^{2}+8 x+7}=\frac{x+3}{x^{2}+5 x-14}$
Q4. From a point, outside a line, the perpendicular is the shortest distance from the point to the line.
OR
A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Q5. Construct a square equal in area to a rectangle whose adjacent sides are 4 cm and 2 cm .
Calculate area of the square and compare it with the area of rectangle.

Federal Board of Intermediate and Secondary Education
 SSC-I Examinations
 Model Question Paper Mathematics

(Curriculum 2006)
Alignment of Questions with Student Learning Outcomes

Sec-A	Q1	Contents and Scope	Student Learning Outcomes *	Cognitive Level **	Allocated Marks
	i	1.4 Multiplication of Matrices	ii) Multiply two or three matrices.	K	1
	ii	2.6 Basic Operations on Complex numbers	Carryout basic operations on complex numbers.	U	1
	iii	2.3 Radicals and Radicands	iii) Transform an expression given in radical form to an exponential form and vice versa.	U	1
	iv	3.2 Logarithm	i) Define logarithm of a number to the base a as the power to which a must be raised to give the number i.e. $\left(a^{x}=y \Leftrightarrow \log _{a} y=x\right.$, $a>0, y>0$ and $a \neq 1$)	U	1
	v	3.2 Logarithm	i) Define logarithm of a number to the base a as the power to which a must be raised to give the number i.e. $\left(a^{x}=y \Leftrightarrow \log _{a} y=x\right.$, $a>0, y>0$ and $a \neq 1$)	K	1
	vi	4.1 Algebraic Expressions	iii) Examine whether a given algebraic expression is a - Polynomial or not, - Rational expression or not.	U	1
	vii	5.2 Remainder Theorem and Factor Theorem	iii) Define zeros of a polynomial.	K	1
	viii	6.1 Highest Common Factor and Least Common Multiple	iii) Know the relationship between HCF and LCM.	K	1
	ix	7.2 Equation involving Absolute Value	ii) Solve the equation, involving variable.	U	1
	x	14.1 Cartesian plane and Linear Graph	vii) Construct a table for pairs of values satisfying a linear equation in two variables.	U	1
	xi	17.1 Congruent Triangles	ii) If two angles of a triangle are congruent then the sides opposite to them are also congruent.	A	1

xii	18.1 Parallelograms and Triangles	v) If three or more parallel lines make congruent intercepts on a transversal, they also intercept congruent segments on any other line that cuts them.	U	1
xiii	22.1 Pythagoras' Theorem	i) In a right-angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.	A	1
xiv	23.1 Theorems Related with Area.	i) Parallelogram on the same base and lying between the same parallel lines (or of the same altitude) are equal in area.	A	1
xv	29.1 Construction of Triangle	ii) Draw perpendicular bisectors of a given triangle and verify their concurrency.	U	1

Sec-B	i	1.6 Solution of Simultaneous Linear Equations	Solve a system of two linear equations and related real-life problems in two unknowns using - Matrix inversion method, - Cramer's rule.	A	4
	ii	2.5 Complex Numbers 2.6 Basic Operations on Complex numbers	iii) Define conjugate of a complex number. iv) Know the condition for equality of complex numbers. Carryout basic operations on complex numbers.	U	4
	ii	4.1 Algebraic Expressions	vii) Find the sum, difference and product of rational expressions.	U	$2+2$
	iii	3.5 Application of Logarithm	Apply laws of logarithm to convert lengthy processes of multiplication, division, and exponentiation into easier processes of addition and subtraction etc.	A	4
	iv	5.3 Factorization of a cubic polynomial.	Use Factor Theorem to factorize a cubic polynomial.	K	4
	iv	6.1 Highest Common Factor and Least Common Multiple	iii) Know the relationship between HCF and LCM.	K	4
	v	7.2 Equation involving Absolute Value	ii) Solve the equation, involving variable.	U	4
	v	7.4 Solving Linear Inequalities.	Solve Linear inequalities with rational coefficients.	U	4
	vi	14.3 Graphic Solution of Equations in Two variables	Solve simultaneous linear equations in two variables using graphical method.	U	4
	vi	15.2 Collinear Points	ii) Use distance formula to show that (given two or more) points are collinear.	U	4

	vii	18.1 Parallelograms and Triangles	i) In a parallelogram: - the opposite sides are congruent, - the opposite angles are congruent, - the diagonals bisect each other.	K	4
	vii	19.1 Line Bisectors and Angle Bisectors	v) Any point inside an angle, equidistant from its arms, is on the bisector of it.	K	4
	viii	22.1 Pythagoras' Theorem	i) In a right-angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.	U	4
	viii	20.1 Sides and Angles of a Triangle	i) If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it	U	4
	ix	21.1 Ratio and Proportion	iii) The internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the lengths of the sides containing the angle.	A	4
Sec-C	Q 3	1.5 Multiplicative Inverse of a Matrix	vii) Verify the result ($A B)^{-1}=B^{-1} A^{-1}$	U	8
	Q 3	6.2 Basic Operations on Algebraic Fractions	Use highest common factor and least common multiple to reduce fractional expressions involving,,$+- \times, \div$.	U	8
	Q 4	20.1 Sides and Angles of a Triangle	iv) From a point, out-side a line, the perpendicular is the shortest distance from the point to the line.	K	8
	Q 4	21.1 Ratio and Proportion	i) A line parallel to one side of a triangle, intersecting the other two sides, divides them proportionally.	K	8
	Q 5	29.2 Figures with Equal Areas	iii) Construct a square equal in area to a given rectangle.	A	8

* Student Learning Outcomes

National Curriculum for Mathematics Grades I-XII, 2006

**Cognitive Level

K: Knowledge
U : Understanding
A: Application

Federal Board of Intermediate and Secondary Education

ASSESSMENT GRID FOR MODEL QUESTION PAPER

Level: SSC-I

Subject: Mathematics
Curriculum: 2006
Examination: Annual 2024

Topics					4 0 0 0 0 0 0 0 0 0	6. Algebraic Manipulation				10. Congruent Triangles				I 7 0 0 0 0 0 0 0 0 0 0 0				
Knowledge based	1 i (1)		$1 v(1)$		$\begin{aligned} & 1 \text { vii (1) } \\ & 2 i v(4) \end{aligned}$	$\begin{gathered} 1 \text { viii (1) } \\ 2 \text { iv (4) } \end{gathered}$			-		2 vii (4)	2 vii (4)	4(8)	4(8)				$\begin{gathered} 36 \\ 31 \% \end{gathered}$
Comprehension/ Understanding based	3(8)	$\begin{gathered} 1 i i(1) \\ 1 i i i(1) \\ 2 i i(4) \end{gathered}$	$1 \mathrm{iv}(1)$	$\begin{aligned} & 1 v i(1) \\ & 2 i i(4) \end{aligned}$		3(8)	$\begin{aligned} & 1 \text { ix (1) } \\ & 2 v(4) \\ & 2 v(4) \end{aligned}$	2 vi (4)	$\begin{gathered} 1 x(1) \\ 2 v i(4) \end{gathered}$		1 xii (1)		2 viii (4)		2 viii (4)		$1 x v(1)$	$\begin{gathered} 56 \\ \mathbf{4 9 \%} \end{gathered}$
Application based	$2 i(4)$		2 iii (4)							$1 \times i(1)$				$2 i x(4)$	1 xiii (1)	$\begin{gathered} 1 \operatorname{xiv}(1) \\ 5(8) \end{gathered}$		$\begin{gathered} 23 \\ 20 \% \end{gathered}$
Total marks for each topic	13	06	06	05	05	13	09	04	05	01	05	04	12	12	05	09	01	115

1,2, 3 etc stands for question numbers
$>\mathrm{i}$, ii, iii etc. stands for part of question numbers
$>(1),(2),(3)$ etc. stands for marks of question papers

