0	0	0	0	0	0	0	0	0	0	0		The state of the s
1	1	1	1	1	1	1	1	1	1	1		SLAMABAD
2	2	2	2	2	2	2	2	2	2	2		
3	3	3	3	3	3	3	3	3	3	3	Aı	nswer Sheet No
4	4	4	4	4	4	4	4	4	4	4		
5	(5)	(5)	5	(5)	5	5	(5)	(5)	(5)	(5)	Si	gn. of Candidate
6	6	6	6	6	6	6	6	6	6	6		
7	7	7	7	7	7	7	7	7	7	7		
8	8	8	8	8	8	8	8	8	8	8	Si	gn. of Invigilator
9	9	9	9	9	9	9	9	9	9	9		
			_	-	_	(Sci	ience SEC' Time	Grou TIO e allo s sec	ip) (CN – Awed:		2006) 5) es	
Q).1	Fill	the relevant	bubbl	e for	each	part.	Each	part	carries (01)	mark	C.
1.	•	If A	$\mathbf{I} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{t}$	then	value	of A	is:					
		A)	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$							В	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
		C)	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$							D	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
2.		Ima	aginary part	of –	i(3i	+ 2)	is:					
		A)	-3							В) 3	
		C)	-2							D) 2	
3.	•	For	what value	of x ,	$\sqrt[3]{3x}$	c – 5	$=\sqrt[3]{2}$	$\sqrt{x + }$	1 ?			
		A)	3							В) 6	
		C)	3^3							D	6^3	
4.	•	If 4	$x = \log_2 64$	4 thei	ı valı	ue of	x is:					
		A)	32							В) 21	
		C)	16							D) -	16
5.	•	Wh	at is the val	ue of	an e	xpres	ssion	log	₁ 27.	x^3 ?		
		A)	0							В) 1	
		C)	3							Б) 4	
6.		Wh	ich of the fo	ollow	ing i	s not	a po	lynoi	mial?	•		
		A)	3x + 8							В	x^2	$+2x+\sqrt{2}$
		C)	$x^2 + 2x + 1$	$\sqrt{2x}$						D	x^2	$x^2 + 2x + \sqrt{2}x$
7		The	e number of	zeroe	es of	the p	olyn	omia	$1 x^3$	+ <i>x</i> – 3 –	$-3x^2$	are:
		A)	0							В) 1	
		C)	2							D) 3	
8.	•		at is the pro $(2 - 2x + 1)$		of tw	o po	lyno	mials	s, if t	heir HCF	is (x	- 1) and their LCM is
			$(x-1)^3$	•						Ŋ) (v	$(-1)^2$
			(x-1) $x-1$								(x^3)	
		\cup)	ν <u>-</u> Τ							L	f(x)	1 1

What is the solution set of |x + 5| = -2?

9.

ROLL NUMBER

Version No.

A) $\{-7, -3\}$

B) {7,3}

C) Ø

- D) 7
- The perpendicular distance of the point P(3,4) from y axis is:
 - A) 0

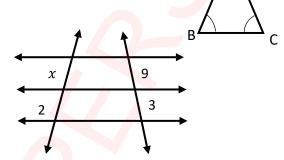
B) 3

C) 4

- D) 7
- 11. What is the length of $m\overline{AB}$ in $\triangle ABC$, if $m\angle B = m\angle C$, $m\overline{BC} = 3cm$ and $m\overline{AC} = 4cm$?
 - A) 3

B) 4

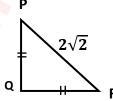
C) 5


- D) 6
- 12. What is the value of x in the adjoining figure:

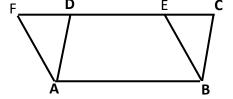
B) 3

C) 6

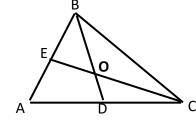
D) $\frac{27}{2}$



- 13. What is the length of \overline{QR} in ΔPQR , if $\overline{PR} = 2\sqrt{2}$ and $\overline{PQ} = \overline{QR}$?
 - A) 2


B) $\sqrt{2}$

C) $\sqrt{8}$


D) 4

- 14. What is the length of \overline{AB} , if area of parallelogram ABEF is $63cm^2$ and altitude of parallelogram ABCD is 7cm.
 - A) 3*cm*
- B) 9cm
- C) 18cm
- D) 27cm

- 15. \overline{BD} , \overline{CE} are two medians of the triangle ABC. If $\overline{EO} = 7cm$, then what is the length of \overline{CE} ?
 - A) (7×1) cm
- B) $(7 \times 2)cm$
- C) (7×3) cm
- D) (7×4) cm

Federal Board SSC-I Examinations Model Question Paper Mathematics Science Group (Curriculum 2006)

Time allowed: 2.40 hours Total Marks: 60

Note: Sections 'B' and 'C' comprise pages 1-2 and questions therein are to be answered on the separately provided Answer Book. Write your answers neatly and legibly.

SECTION-B (Marks 36)

- Q.2 Attempt ALL parts. Each part carries (04) marks.
- (i) Apply Cramer's Rule to solve $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.
- (ii) Find values of x and y if the product (x iy)(3 + 5i) is a conjugate of (-6 24i).

OR

If
$$\frac{1}{x} = \sqrt{7} + \sqrt{6}$$
 then find the values of $\left(x + \frac{1}{x}\right)$, $\left(x - \frac{1}{x}\right)$ and $\left(x^2 - \frac{1}{x^2}\right)$.

- (iii) Find the value of n if $\log_4(64)^{n+1} = \log_5(625)^{n-1}$
- (iv) Use factor theorem to factorize the cubic polynomial $x^3 + 5x^2 2x 24$.

OR

Find a polynomial similar to $x^2 - 5x - 14$, such that their HCF is (x - 7) and LCM is $(x^3 - 10x^2 + 11x + 70)$

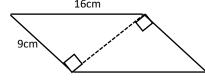
(v) $\left| \frac{3x+9}{2x+1} \right| - 9 = 5 \text{ where } x \in \mathcal{R}$

OR

Solve
$$\frac{2}{3} \le \frac{1+x}{6} \le \frac{3}{4}$$
 where $x \in \mathcal{R}$

(vi) Solve the following system of linear equations graphically.

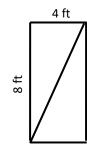
$$x + 2y = -4$$
; $2x + 4y = 8$

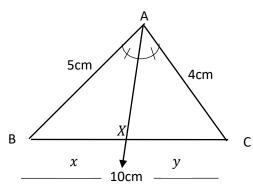

OR

Check whether the points P(3,3), Q(8,3) and R(3,12) are collinear or not.

(vii) Find area of the parallelogram shown in the figure.

OF


Prove that any point inside an angle, equidistant from its arms, is on the bisector of it.


(viii) Can a table 9 feet wide (legs folded) fit through a rectangular doorway 4 feet by 8 feet? Use Pythagoras theorem to decide.

OR

Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60° .

(ix) In $\triangle ABC$ (shown in the figure), \overline{AX} bisects $\angle A$. If $\overline{mAC} = 4cm$, $\overline{mAB} = 5cm$ and $\overline{mBC} = 8cm$ Find the values of x and y.

SECTION-C (24Marks)

Note: Attempt ALL questions. Each question carries (08) marks.

Q3. If $A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ then show that $(AB)^{-1} = B^{-1}A^{-1}$.

OR

Prove that
$$\frac{x}{x^2 - x - 2} - \frac{1}{x^2 + 5x - 14} - \frac{2}{x^2 + 8x + 7} = \frac{x + 3}{x^2 + 5x - 14}$$

Q4. From a point, outside a line, the perpendicular is the shortest distance from the point to the line.

OR

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Q5. Construct a square equal in area to a rectangle whose adjacent sides are 4cm and 2cm.

Calculate area of the square and compare it with the area of rectangle.

Federal Board of Intermediate and Secondary Education

SSC-I Examinations

Model Question Paper Mathematics

(Curriculum 2006)

Alignment of Questions with Student Learning Outcomes

Sec-A	Q1	Contents and Scope	Student Learning Outcomes *	Cognitive Level **	Allocated Marks
	i	1.4 Multiplication of Matrices	ii) Multiply two or three matrices.	K	1
	ii	2.6 Basic Operations on Complex numbers	Carryout basic operations on complex numbers.	U	1
	iii	2.3 Radicals and Radicands	iii) Transform an expression given in radical form to an exponential form and vice versa.	U	1
	iv	3.2 Logarithm	i) Define logarithm of a number to the base a as the power to which a must be raised to give the number i.e. ($a^x = y \Leftrightarrow log_a y = x$, $a > 0, y > 0$ and $a \neq 1$)	U	1
	V	3.2 Logarithm	i) Define logarithm of a number to the base a as the power to which a must be raised to give the number i.e. ($a^x = y \Leftrightarrow log_a y = x$, $a > 0, y > 0$ and $a \ne 1$)	K	1
	vi	4.1 Algebraic Expressions	 iii) Examine whether a given algebraic expression is a Polynomial or not, Rational expression or not. 	U	1
	vii	5.2 Remainder Theorem and Factor Theorem	iii) Define zeros of a polynomial.	K	1
	viii	6.1 Highest Common Factor and Least Common Multiple	iii) Know the relationship between HCF and LCM.	K	1
	ix	7.2 Equation involving Absolute Value	ii) Solve the equation, involving variable.	U	1
	х	14.1 Cartesian plane and Linear Graph	vii) Construct a table for pairs of values satisfying a linear equation in two variables.	U	1
	xi	17.1 Congruent Triangles	ii) If two angles of a triangle are congruent then the sides opposite to them are also congruent.	A	1

2	18.1 Parallelograms and Triangles	v) If three or more parallel lines make congruent intercepts on a transversal, they also intercept congruent segments on any other line that cuts them.	U	1
Х	22.1 Pythagoras' Theorem	i) In a right-angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.	A	1
Х	23.1 Theorems Related with Area.	i) Parallelogram on the same base and lying between the same parallel lines (or of the same altitude) are equal in area.	A	1
2	29.1 Construction of Triangle	ii) Draw perpendicular bisectors of a given triangle and verify their concurrency.	U	1

Sec-B	i	1.6 Solution of Simultaneous Linear Equations	Solve a system of two linear equations and related real-life problems in two unknowns using • Matrix inversion method, • Cramer's rule.	A	4
	ii	2.5 Complex Numbers 2.6 Basic Operations on Complex numbers	iii) Define conjugate of a complex number.iv) Know the condition for equality of complex numbers.Carryout basic operations on complex numbers.	U	4
	ii	4.1 Algebraic Expressions	vii) Find the sum, difference and product of rational expressions.	U	2+2
	iii	3.5 Application of Logarithm	Apply laws of logarithm to convert lengthy processes of multiplication, division, and exponentiation into easier processes of addition and subtraction etc.	A	4
	iv	5.3 Factorization of a cubic polynomial.	Use Factor Theorem to factorize a cubic polynomial.	K	4
	iv	6.1 Highest Common Factor and Least Common Multiple	iii) Know the relationship between HCF and LCM.	K	4
	V	7.2 Equation involving Absolute Value	ii) Solve the equation, involving variable.	U	4
	V	7.4 Solving Linear Inequalities.	Solve Linear inequalities with rational coefficients.	U	4
	vi	14.3 Graphic Solution of Equations in Two variables	Solve simultaneous linear equations in two variables using graphical method.	U	4
	vi	15.2 Collinear Points	ii) Use distance formula to show that (given two or more) points are collinear.	U	4

	vii	18.1 Parallelograms and Triangles	i) In a parallelogram:the opposite sides are congruent,the opposite angles are congruent,the diagonals bisect each other.	K	4
	vii	19.1 Line Bisectors and Angle Bisectors	v) Any point inside an angle, equidistant from its arms, is on the bisector of it.	К	4
	viii	22.1 Pythagoras' Theorem	i) In a right-angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.	U	4
	viii	20.1 Sides and Angles of a Triangle	i) If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it	U	4
	ix	21.1 Ratio and Proportion	iii) The internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the lengths of the sides containing the angle.	A	4
Sec-C	Q 3	1.5 Multiplicative Inverse of a Matrix	vii) Verify the result $(AB)^{-1} = B^{-1}A^{-1}$	U	8
	Q 3	6.2 Basic Operations on Algebraic Fractions	Use highest common factor and least common multiple to reduce fractional expressions involving +, -, ×, ÷.	U	8
	Q 4	20.1 Sides and Angles of a Triangle	iv) From a point, out-side a line, the perpendicular is the shortest distance from the point to the line.	K	8
	Q 4	21.1 Ratio and Proportion	i) A line parallel to one side of a triangle, intersecting the other two sides, divides them proportionally.	K	8
	Q 5	29.2 Figures with Equal Areas	iii) Construct a square equal in area to a given rectangle.	A	8

* Student Learning Outcomes

National Curriculum for Mathematics Grades I-XII, 2006

**Cognitive Level

K: Knowledge

U: Understanding

A: Application

Federal Board of Intermediate and Secondary Education

ASSESSMENT GRID FOR MODEL QUESTION PAPER

Level: SSC-I **Subject: Mathematics** Curriculum: 2006 **Examination: Annual 2024**

Topics	1. Matrices and Determinants	2. Real and Complex Numbers	3. Logarithms	4. Algebraic Expressions & Algebraic Formulas	5. Factorization	6. Algebraic Manipulation	7. Linear Equations and Inequalities	8. Linear Graphs and Their Application	9. Introduction to Coordinate Geometry	10. Congruent Triangles	11. Parallelograms and Triangles	12. Line Bisectors and Angle Bisectors	13. Sides and Angles of a Triangle	14. Ratio and Proportion	15. Pythagoras 'Theorem	16. Theorems Related with Area	17. Practical Geometry Triangles	Total marks for each assessment objective
Knowledge based	1 i (1)		1 v (1)		1 vii (1) 2 iv (4)	1 viii (1) 2 iv (4)		Ċ			2 vii (4)	2 vii (4)	4(8)	4(8)				36 31%
Comprehension/ Understanding based	3(8)	1 ii (1) 1 iii (1) 2 ii (4)	1 iv (1)	1 vi (1) 2 ii (4)		3(8)	1 ix (1) 2 v (4) 2 v (4)	2 vi (4)	1 x (1) 2 vi (4)		1 xii (1)		2 viii (4)		2 viii (4)		1 xv (1)	56 49%
Application based	2 i (4)		2 iii (4)							1 xi (1)				2ix (4)	1 xiii (1)	1 xiv (1) 5(8)		23 20%
Total marks for each topic	13	06	06	05	05	13	09	04	05	01	05	04	12	12	05	09	01	115

^{➤ 1, 2, 3} etc stands for question numbers

<sup>i, ii, iii etc. stands for part of question numbers
(1), (2), (3) etc. stands for marks of question papers</sup>