Version No.										
0	0	0	0							
1	1	1	1							
2	2	2	2							
3	3	3	3							
4	4	4	4							
5	5	5	5							
6	6	6	6							
7	7	7	7							
8	8	8	8							
9	9	9	9							
PHYSICS HSSC-I										

SECTION – A (Marks 17) Time allowed: 25 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

1.	Which one of the following is a dimensionless quantity?											
	A. C	Stress Surface tension	8 0	B. D	Energy Strain	0						
r	U. If a he	du moves towards	Earth und	D.	fact of growity need	laating air						
۷.	resistance, its motion is called:											
	A.	Free fall	0	B.	Gravitational	0						
	C.	Parabolic	0	D.	Uniform	0						
3.	Which one of the following quantities never change for collision of two bodies in an isolated system?											
	A.	momentum of eac	h body		0							
	B. K.E of each body											
	C.	C. total momentum of the system										
	D.	total K.E of the sy	/stem		O							
4.	A stone is thrown to perform projectile motion, which one of the following is true											
	for vertical acceleration of stone:											
	A.	Zero		($\sum_{i=1}^{n}$							
	B. C	Constant	ant maint		$\sum_{i=1}^{n}$							
	C. D	$\int Maximum at point of projection $										
_	D.		i or projec									
5.	Which	h one of the follown	ng 1s NOT	unit of	work?	\bigcirc						
	A.	Joule	X	B. D	Kg.m / s Ws	Ö						
r.	U.			D.	VV 5							
6.	Increase in the speed of sound in the air per degree rise in temperature is:											
	A. C	61 ms	Ö	B. D	61 cms	Ö						
	U.	0.01 CIIIS	\bigcup	ש.	0.1 1115	\bigcirc						
			Page 1	of 2								

7.	For a simple harmonic oscillator, $a = -\omega^2 x$, its frequency is:										
	A.	2π ω	0	В.	$\frac{2\pi}{\omega}$	0					
	C.	$\frac{\omega}{2\pi}$	0	D.	$\frac{1}{\omega}$	0					
8.	The expression for orbital velocity is:										
	A.	$v = \sqrt{MGR}$	0	B.	$v = \sqrt{\frac{GM}{R}}$	0					
	C.	$v = \sqrt{\frac{GR}{M}}$	0	D.	$v = \sqrt{\frac{2GM}{R}}$	0					
9.	Maxin	mum drag force on a	falling sp	here is	9.8 N, its weight wil	l be:					
	A. C	1 N 19 8 N	\bigcirc	B. D	9.8 N 4 9 N	0					
10.	When length of a simple pendulum is doubled, the ratio of old to new time period										
	Will b	e: 2·1	\bigcirc	В	1.1	0					
	C.	1:2	ŏ	D.	$1:\sqrt{2}$	Õ					
11.	The Stoke's law is valid for:										
	A.	A. All objects									
	B.	Spherical objects f	Spherical objects falling at high speed								
	C. D.	C. Spherical objects falling at slow speed O D. Cubical objects									
12.	The lo	ocus of all points in a	a medium	having	the same phase of vi	ibration is called:					
	А.	Crest	0	В.	Trough	0					
	C.	Wavelength	0	D.	Wave front	0					
13.	Which one is the form of the first law of thermodynamics for isothermal expansion process?										
	A.	Q = W	0	B.	Q = -W	Q					
	C.	$W = -\Delta U$	0	D.	$W = \Delta U$	0					
14.	The p	rocess in which no h	eat energy	y enters	or leaves the system	n is called:					
	A. C.	Isobaric process	8	D.	Isochoric process	0					
15.	A stor	ne is moving w <mark>ith</mark> u	niform spe	eed in a	vertical circle by m	ean of a string, the					
	tension in the string will be maximum:										
	A. C.	At horizontal level		ь. D.	At every point						
16.	The n	noment of inertia of	a thin roc	l of mas	ss "M" and length "	L" about its center					
	нз. А.	$\frac{1}{2}ML^2$	\bigcirc	B.	$\frac{2}{2}ML^2$	0					
	C.	$\frac{1}{12}ML^{2}$	0	D.	5 ML^{2}	0					
17.	7. If two tuning forks of frequencies f_1 and f_2 are sounded together such										
	A.	$f_2 - f_1$	O	B.	$f_2 + f_1$	0					
	C.	$\mathbf{f}_1 - \mathbf{f}_2$	0	D.	$f_1 + 2f_2$	0					
			Page 7	of 2	_						
			1 450 2 (-1 -							

Time allowed: 2.35 hours

Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any **FOURTEEN** parts. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. List applications of moment due to a force.
- ii. Show that the equation $v = \sqrt{\frac{TxL}{M}}$ is dimensionally consistent, where v = speed of transverse wave in a stretched string, T= tension in a stretched string, L = length of string and M = mass of string.
- iii. How are the cranes able to lift very heavy load without toppling?
- iv. Find the angle between two forces of equal magnitude such that the magnitude of their resultant is equal to either of them.
- v. Show that the rate of change of momentum is equal to the applied force.
- vi. When a driver applies brake suddenly then why does the upper part of the passenger get jerk or move in the forward direction?
- vii. Calculate the orbital radius from the centre of the Earth for a Geostationary satellite.
- viii. A motorcar is traveling at a speed of 30ms⁻¹. If the wheel has a diameter of 1.5m, find its angular speed in rad s⁻¹ and rev s⁻¹?
- ix. Is it possible for a person to distinguish between a raw egg and a hard-boiled egg by spinning each on a table?
- x. When a tractor moves with uniform velocity, its larger wheel rotates slowly than its smaller wheel. Why?
- xi. What is the function of shock absorber in a car?
- xii. (a) For what values of the angle ' θ ' between two vectors their scalar product is positive?
 - (b) For what values of the angle 'θ' between two vectors their scalar product is negative?
- xiii. What is the power of an airplane of mass 3000kg, if on a runway it is capable of attaining a speed of 80ms⁻¹ from rest in 4.0 seconds?
- xiv. A source of sound and an observer are moving away from each other. What happens to the apparent pitch heard by the observer?
- xv. Why are Polaroid sunglasses better than ordinary sunglasses?

Page 1 of 2

- xvi. In Young's double slit experiment the second order maximum occurs at $\theta = 25^{\circ}$ when the slits are illuminated by light of the wavelength 650nm. Determine the slit separation.
- xvii. Why is it not possible to see interference where light beams from head lamps of a car overlap?
- xviii. Why do bowlers shine one side of a cricket ball?
- xix. Why can efficiency of a thermodynamic system never be 100%?
- xx. What length of an open pipe will produce a frequency of 1200Hz as its first overtone on a day when speed of sound is 340ms⁻¹.

SECTION – C (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Define the molar heat capacity at constant pressure ' C_P ' and molar heat capacity at constant volume ' C_v ' for a gas. Prove that $C_P C_v = R$ (02+04)
 - b. 25200J of heat is supplied to the system while the system does 6000J of work. Calculate the change in internal energy of the system. (04)
 - c. Why is it not possible to obtain diffraction of x-rays by Young's double slit experiments? (03)
- Q.4 a. Define Simple Harmonic Motion (SHM). Show that motion of a simple pendulum is SHM. Also derive an expression for its time period "T". (02+04)
 - b. What should be the length of simple pendulum whose time period is one second? What is its frequency? (03)
 - c. Identify the factors on which speed of sound in air depends. (04)
- Q.5 a. Using equations of uniformly accelerated motion, determine height, range and time of flight for a projectile. (02+02+02)
 - b. Water flows through a pipe of 1 cm diameter with 1 ms⁻¹ speed. What should be the diameter of the nozzle if water is ejecting at an average speed of 2.1 ms⁻¹. (04)
 - c. Why does smoke rise faster in a chimney on a windy day (03)

PHYSICS HSSC-1 MODEL QUESTION PAPER SLOs (Curriculum 2006)

SECTION-A

Q.1 Choose the correct answer A/B/C/D by filling the relevant bubble for each question.

- 1. Check the homogeneity of physical equations by using dimensionality and base units.
- 2. Distinguish between positive and negative acceleration, uniform and variable acceleration.
- 3. Describe that while momentum of a system is always conserved in interaction between bodies some change in K.E. usually takes place.
- 4. Communicate the ideas of a projectile in the absence of air resistance that. (i) Horizontal component (VH) of velocity is constant. (ii) Acceleration is in the vertical direction and is the same as that of a vertically free falling object. (iii) The horizontal motion and vertical motion are independent of each other.
- 5. Describe the concept of work in terms of the product of force F and displacement d in the direction of force (Work as scalar product of F and d).
- 6. Identify the factors on which speed of sound in air depends
- 7. Identify and use the equation; $a = -\omega 2 x$ as the defining equation of SHM.
- 8. Define the term orbital velocity and derive relationship between orbital velocity, the gravitational constant, mass and the radius of the orbit.
- 9. Describe that real fluids are viscous fluids.
- 10. analyze the motion of a simple pendulum is SHM
- 11. Describe that viscous forces in a fluid cause a retarding force on an object moving through it.
- 12. State Huygen's principle and use to construct wavefront.
- 13. Explain that first law of thermodynamics expresses the conservation of energy.
- 14. Explain that first law of thermodynamics expresses the conservation of energy.
- 15. describe situations in which the centripetal acceleration is caused by a tension force
- 16. define moment of inertia of a body
- 17. Describe the phenomenon of formation of beats due to interference of noncoherent sources.

SECTION-B

Q.2 Attempt FOURTEN parts from following

- 1. List applications of torque or moment due to a force.
- 2. Check the homogeneity of physical equations by using dimensionality and base units.
- 3. Describe how cranes are able to lift heavy loads without toppling.
- 4. Determine sum of vectors using perpendicular components.
- 5. Describe the Newton's second law of motion as rate of change of momentum
- 6. Apply Newton's laws to explain the motion of objects in a variety of context.
- 7. Describe that communication satellites are usually put into orbit high above the equator and that they orbit the earth once a day so that they appear stationary when viewed from earth.
- 8. Solve problems by using $S = r \theta$ and $v = r\omega$.

- 9. Explain conservation of angular momentum as a universal law and describe examples of conservation of angular momentum.
- 10. Explain conservation of angular momentum as a universal law and describe examples of conservation of angular momentum.
- 11. Describe practical examples of damped oscillations with particular reference to the efforts of the degree of damping and the importance of critical damping in cases such as a car suspension system.
- 12. distinguish between positive, negative and zero work with suitable examples
- 13. Express power as scalar product of force and velocity
- 14. Explain the observed change in frequency of a mechanical wave coming from a moving object as it approaches and moves away (i.e. Doppler effect).
- 15. Identify and express that polarization is produced by a Polaroid.
- 16. Determine the wavelength of light using diffraction grating.
- 17. State the necessary conditions to observe interference of light.
- 18. Describe that the pressure difference can arise from different rates of flow of a fluid (Bernoulli effect).
- 19. Explain the working principle of Carnot's engine
- 20. Determine the wavelength of sound in air using stationary waves and calculate speed of sound.

SECTION-C

- Q.3 (a) Define specific heat of gas. Apply first law of thermodynamics to derive Cp Cv = R
 - (b) Apply first law of thermodynamics
 - (c) State the necessary conditions to observe interference of light.
- Q.4 (a+b) analyze the motion of a simple pendulum is SHM and calculate its time period.
 (c) Identify the factors on which speed of sound in air depends
- Q.5 (a) Evaluate using equations of uniformly accelerated motion that for a given initial velocity of frictionless projectile. 1. How higher does it go? 2. How far would it go along the level land? 3. Where would it be after a given time? 4. How long will it remain in air?
 - (b) Describe equation of continuity Av = Constant, for the flow of an ideal and incompressible fluid and solve problems using it.
 - (c) Describe that the pressure difference can arise from different rates of flow of a fluid (Bernoulli Effect)

PHYSICS HSSC-I Table of Specifications

Topics	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Marks	% age
Knowledge based		Q 2(i)3	Q 1(2)1 Q 1(3)1 Q 5(a)6	Q 1(5)1	Q 1(16)1 Q 1(8)1		Q 4(a)6	Q1(6)1 Q 4(c)4	Q 1(12)1	Q 3(a)6 Q1(13)1 Q 1(14)1	34	29.3%
Understanding based		Q 2(iv)3 Q 2(iii)3	Q 1(4)1 Q 2(v)3	Q 2(xii)3 Q2(xiii)3	Q 1(15)1 Q 2(vii)3 Q 2(viii)3	Q 1(9)1 Q 1(11)1 Q5(b)4	Q 2(xi)3 Q 4(b)3 Q 1(7)1	Q1(17)1 Q 2(xiv)3 Q 2(xx)3	Q2(xv)3 Q2(xvii)3 Q 3(c)3 Q 2(xvi)3	Q 2(xix)3 Q 3(b)4	62	53.4%
Application based	Q1(1)1 Q2(ii)3		Q 2(vi)3	SK	Q 2(ix)3 Q 2(x)3	Q2(xviii)3 Q5(c)3	Q 1(10)1				20	17.2%
Total marks	4	9	15	7	15	12	14	12	13	15	116	100%

KEY:

1(1)(01) Question No (Part No.) (Allocated Marks)