

Answer Sheet No. \qquad

Sign. of Candidate

\qquad

MATHEMATICS HSSC-I (2 ${ }^{\text {nd }}$ Set)
 SECTION - A (Marks 20)
 Time allowed: $\mathbf{2 5}$ Minutes

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.
Q. 1 Fill the relevant bubble for each part. All parts carry one mark.
(1) If $\frac{2}{1-i}-x=0$, then value of x is:
A. $-1-i$
\bigcirc
B. $-1+i$
C. $1-i$
D. $1+i$
(2) If A and B are two sets and $A \cap B=\phi$, then $n(A \cup B)$ is:
A. $n(A)+n(B)$
B. $n(A)$
C. $n(B)$
D. $n(A)+n(B)-n(A \cap B)$
(3) If $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] X=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ then what is the order of matrix X ?
A. 2×2
\bigcirc
B. 2×3
C. $\quad 3 \times 2$
D. 3×3
(4) If $x^{3}+3 x^{2}-6 x+2$ is divided by $x+2$, then the remainder is:
A. -18
\bigcirc
B. $\quad 9$
C. -9
D. 18

(5) If α, β are the roots of the equation $3 x^{2}-2 x-9=0$, then $(\alpha+1)(\beta+1)$ is:
A. $-\frac{2}{3}$
B. $\frac{2}{3}$
C. $-\frac{1}{3}$
D.
$\frac{1}{3}$
(6) For how many values of x, the expression $x^{2}-x-2=(x+1)(x-2)$ holds?
A. For no value of x
B. For only one value of x
C. For only two values of x
D. For all values of x
(7) The series $1+\frac{x}{2}+\frac{x^{2}}{2}+\cdots$ is convergent if:
A. $\quad x \in R$
\bigcirc
B. $\quad x \in[-2,2]$
C. $\quad x \in(-2,2)$
D. $x \in Z$
(8) Which of the following series represents $\sum_{n=1} 6(3)^{n-1}$?
A. $6+9+12+\cdots$
\bigcirc
B. $6+18+54+\cdots$
C. $3+9+27+\cdots$
D. $6+12+18+\cdots$
(9) The probability of getting a total of 10 in a single throw of two dice is:
$\begin{array}{ll}\text { A. } & \frac{1}{9} \\ \text { C. } & \frac{1}{6}\end{array}$
\bigcirc
B. $\frac{1}{12}$
\bigcirc
D. $\frac{5}{36}$
(10) In how many ways can we choose a committee of 5 from 8 persons?
A. 56
B. 336
C. 6720
D. 6
(11) The middle term in the expansion of $(a+b)^{6}$ is:
A. T_{3}
B. T_{4}
C. $\quad T_{5}$
D. T_{6}
(12) The expansion of $(1-2 x)^{\frac{1}{3}}$ is valid if
A. $\quad|x|>\frac{1}{2}$
B. $\quad|x|>1$
C. $\quad|x|<\frac{1}{2}$
D. $\quad|x|<2$
(13) What is the value of l in the adjoining figure?
A. π
B. 2π
C. 3π
D. 4π

(14) $\sin 294^{\circ}=$ \qquad .
A. $\sin 24^{\circ}$
B. $\cos 24^{\circ}$
C. $-\sin 24^{\circ}$
D. $-\cos 24^{\circ}$
(15) Which one of the following is equal to $\cos (\alpha+\beta)$ if $\alpha+\beta+\gamma=180^{\circ}$?
A. $\sin \gamma$
B. $\cos \gamma$
C. $-\cos \gamma$
D. $-\sin \gamma$
(16) At what angle, the graph of $y=\cos 2 x$ crosses x-axis?
A. $\frac{\pi}{4}$
\bigcirc
B. $\frac{\pi}{2}$
C. π
D. 0
(17) If $a=2, b=3$ and $\gamma=30^{\circ}$, then triangular area is:
A. $\quad 1.5$
B. 0.8
C. 2.6
D. 2.1
(18) Which one of the following is the simplified form of $\sqrt{r r_{1} r_{2} r_{3}}$ (With usual notations)?
A. ΔB. Δ^{2}
C. Δ^{3}
D. $\sqrt{\Delta}$
(19) The value of $\tan \left[\cos ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}\left(-\frac{1}{2}\right)\right]$ is:
A. 0
\bigcirc
B. 0.5
C. undefined
D. 1
(20) Solution set of $\sin x=-\frac{\sqrt{3}}{2}$ is:
A. $\quad\left\{\frac{4 \pi}{3}+2 n \pi\right\} \cup\left\{\frac{5 \pi}{3}+2 n \pi\right\}$
B. $\left\{\frac{\pi}{3}+2 n \pi\right\} \cup\left\{\frac{2 \pi}{3}+2 n \pi\right\}$
C. $\left\{\frac{\pi}{3}+2 n \pi\right\} \cup\left\{\frac{4 \pi}{3}+2 n \pi\right\}$
D. $\left\{\frac{\pi}{2}+2 n \pi\right\} \cup\left\{\frac{3 \pi}{2}+2 n \pi\right\}$

Federal Board HSSC-I Examination
Mathematics Model Question Paper
(Curriculum 2000)
Time allowed: 2.35 hours
Total Marks: 80
Note: Sections ' B ' and ' C ' comprise pages 1-2 and questions therein are to be answered on the separately provided Answer Book. Write your answers neatly and legibly.

SECTION - B (Marks 48)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks. $(12 \times 4=48)$
i. If $=\sqrt{2}-i$, then show that
a. $\quad z^{2}+\bar{z}^{2}$ is a real number.
b. $\quad(z-\bar{z})^{2}$ is a real number.
ii. \quad Prove that $p \rightarrow q=\sim(p \wedge \sim q)$
iii. If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -3 & -2 & 2 \\ 1 & 2 & -3\end{array}\right]$, then find:
a. $\quad A_{11}, A_{21}$ and A_{31}
b. $\quad|A|$
iv. Solve the system of equations: $y=25 x^{2}-9 x+2 ; y+2=11 x$
v. Show that the roots of $(x-p)(x-q)+(x-q)(x-r)+(x-r)(x-p)=0$ are real and they cannot be equal unless $p=q=r$.
vi. Resolve $\frac{2 x-3}{\left(x^{2}-x+1\right)(3 x-2)}$ into partial fraction.
vii. If b, c, p, q, r are in A.P. then prove that $b+r=c+q=2 p$
viii. The $p t h$ term of an H.P. is q and the $q t h$ term is p. Find the ($p q)$ th term of H.P.
ix. Find the number of permutations of all the letters in the word "HOCKEY" such that
a. the letters C and K are placed together.
b. the letters C and K are not placed together.
x. If a be nearly equal to b, then prove that $\frac{b+2 a}{a+2 b}$ is nearly equal to $\sqrt[3]{\frac{a}{b}}$.
xi. In the given figure, prove that
a. $\quad \sec ^{2} \theta-\tan ^{2} \theta=1$
b. $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$

xii. Deduce $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \tan \beta}$ from fundamental law of trigonometry.
xiii. Sketch the graph of $y=\cos \left(\frac{\pi}{6} x\right)$ for $-4 \leq x \leq 4$.
xiv. Using Law of Cosines, prove that $\frac{\cos \alpha}{a}+\frac{\cos \beta}{b}+\frac{\cos \gamma}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$ with usual notations.
xv. Prove that $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}=\frac{\pi}{4}$.
xvi. Solve $\sin x+\cos x=1$ for all real values of x.

SECTION - C (Marks 32)

Note: Attempt any FOUR questions. All questions carry equal marks.
Q. 3 Solve the following system of linear equations by reducing its augmented matrix to the reduced echelon form

$$
\begin{gathered}
4 x+8 y+z=5 \\
2 x-3 y+2 z=-5 \\
x+7 y-z=10
\end{gathered}
$$

Q. 4 Find the conditions that one root of the equation $a x^{2}+b x+c=0,(a \neq 0)$ may be
i. three times the other
iii. Additive inverse of the other
ii. square of the other.
iv. multiplicative inverse of the other
Q. 5 Show that $\left(2^{\frac{1}{4}}\right)\left(4^{\frac{1}{8}}\right)\left(8^{\frac{1}{16}}\right)\left(16^{\frac{1}{32}}\right) \ldots \infty=2$
Q. 6 Prove that $3^{n}+2^{n-1}<4^{n}$ by the principle of extended mathematical induction.
Q. 7 Prove the following identities:
i. $\quad \sin 3 \theta+\sin 5 \theta+\sin 7 \theta+\sin 9 \theta=4 \cos \theta \sin 6 \theta \cos 2 \theta$
ii. $\cos 5 \theta+\cos \theta+2 \cos 3 \theta=4 \cos 3 \theta \cos ^{2} \theta$
Q. 8 A poster 4 feet high and 8 feet from the ground is being observed on a wall. If the observer is standing x feet from the wall and his eye is 5 feet from the ground level, then show that
$\theta=\tan ^{-1}\left(\frac{4 x}{x^{2}+21}\right)$.

MATHEMATICS HSSC-I ($2^{\text {nd }}$ Set)

Student Learning Outcomes Alignment Chart
National Curriculum 2000

S\#	Section: Q. No. (Part no.)	Contents and Scope	Student Learning Outcomes
1	A: 1(1)	Concept of Complex Numbers and Basic Operations on them Conjugate and its properties	To know the conjugate of a complex number; To know the additive and multiplicative identities of complex numbers and to find the additive and multiplicative inverses.
2	A:1(2)	Revision of the work done in the previous classes	Sets and their types; operations on sets and verification properties of operations on sets.
3	A: 1(3)	Revision of the work done in the previous classes	A matrix, its rows and columns and order of a matrix, conformability of addition and multiplication of matrices.
4	A: 1(4)	Application of Remainder Theorem in the Solution of Equations	To apply remainder theorem in finding one or two rational roots of cubic and quadratic equations
5	A: 1(5)	Relations between the Roots and Co-efficient of Quadratic Equations	To establish the relations between roots and coefficient of a quadratic equation and their applications.
6	A: 1(6)	Partial Fractions	To distinguish identities from conditional equations
7	A: 1(7)	Geometric Series	To establish the formulas for finding the sum of geometric series upto infinity
8	A: 1(8)	Geometric Series	To establish the formulas for finding the sum of geometric series upto infinity
9	A: 1(9)	Probability(Basic Concepts and Estimation of Probability)	To know the formula for finding the probability; To apply the formula for finding probability in simple cases
10	A: 1(10)	Permutations	To understand the meaning of permutation of n different things taken r at a time and know the notation ${ }^{n} \mathrm{P}_{\mathrm{r}}$
11	A: 1(11)	Binomial $\begin{aligned} & \text { Sequence } \\ & \text { positive integral indices }\end{aligned}$	To find the general term in the expansion of $(a+b)^{n}$ and find their particular terms (Without expansion)
12	A: 1(12)	Binomial Sequence for negative integral and rational indices	To state binomial theorem for rational indices and to find number of terms
13	A: 1(13)	Relation between the length of an arc of a circle and the circular measure of its central angle	To establish the rule $\theta=l / r$ where r is the radius of the circle, l is a length of the arc and θ is the circular measure of the central angle of arc
14	A: 1(14)	Trigonometric Ratios of Allied Angles	To find the trigonometric functions of the angles
15	A: 1(15)	Fundamental Formulas of Sum and Difference of Two Angles and their Application	To establish the formula: $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ and its deduction
16	A: 1(16)	Graphs of Trigonometric Functions	To know that the graphs of the trigonometric functions are repeated depending upon the

			period of the functions
17	A: 1(17)	Areas of Triangular Regions	To establish and apply the formula for finding the area of the triangular region; $\Delta=\frac{1}{2} a b \sin \gamma$
18	A: 1(18)	Radii of Circles connected with Triangles	To find the radii of b) In-cirlce c) Escribed circle of triangles and to solve problems involving these radii
19	A: 1(19)	Inverse Trigonometric Functions	To know the general and principle trigonometric functions, their inverses and their values
20	A: 1(20)	Solution of Trigonometric Equations	To solve trigonometric Equations and to make use of the period of trigonometric functions for finding the general solution of the equations
21	B: 2(i)	Concept of Complex Numbers and Basic Operations on them. Conjugate and its properties	To know four binary operation on complex numbers; To know the conjugate of the complex numbers
22	B: 2(ii)	Logical Proofs of the Operation on Sets	Introduction to the logical statements and their composition; Truth values and truth tables of logical statements and their logical equivalence
23	B: 2(iii)	Determinants and their Application in the study of the Algebra of the Matrices	Concept of a determinant of a square matrix expansion of the determinants upto order 4 , to write minors and cofactors of the elements of a matrix
24	B: 2(iv)	Solution of a system of Two Equations	To solve a system of two equations, when a) one of them is linear and the other is quadratic in two variables
25	B: 2(v)	Relations between the Roots and Co-efficient of Quadratic Equations	To find the nature of the roots of a quadratic equation with rational coefficients.
26	B: 2(vi)	Partial Fractions	To reduce a fraction into partial fractions when its denominator consists of c) non-repeated quadratic factor
27	B: 2(vii)	Arithmetic Sequence	To solve problems pertaining to the terms of an A.P.
28	B: 2(viii)	Harmonic Sequence	To find the nth term of harmonic progression (H.P) and apply it in solving related problems
29	B: 2(ix)	Permutations	To establish formula for ${ }^{n} \mathrm{P}_{\mathrm{r}}$ and apply it in solving problems of finding the number of arrangements of n things taken r at a time
30	B: 2(x)	Binomial Series	To be able to identify given series as a binomial expansion and hence find the sum of series
31	B: 2(xi)	Trigonometric Functions	To establish the following relations between the trigonometric ratios; $1+\tan ^{2} \theta=\sec ^{2} \theta \text { and }$ $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$ To be able to apply the above

			mentioned relations in b) proving the trigonometric identities
32	B: 2(xii)	Fundamental Formulas of Sum and Difference of Two Angles and their Application	To establish the formula: $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ and deduction there from, for finding the sum and difference of the trigonometric ratios
33	B: 2(xiii)	Graphs of Trigonometric Functions	To draw the graphs of the six basic trigonometric functions.
34	B: 2(xiv)	Cosine Formula	To establish the cosine formula and apply it in the solution of oblique triangles
35	B: 2(xv)	Inverse Trigonometric Functions	Development of formulas for inverse trigonometric functions
36	B: 2(xvi)	Solution of Trigonometric Functions	To solve trigonometric Equations and to make use of the period of trigonometric functions for finding the general solution of the equations
37	C:3	Solving Simultaneous Linear System of Equations	To be able to solve a system of linear non-homogeneous equations by the use of b) echelon and reduced echelon form
38	C: 4	Relations between the Roots and Co-efficient of Quadratic Equations	To establish the relations between roots and coefficient of a quadratic equation and their applications.
39	C: 5	Geometric Series	To establish the formulas for the sum of geometric sequence upto infinity
40	C: 6	Introduction and Application of Mathematical Induction	Principle of mathematical induction and its various applications
41	C:7	Sum, Difference and Product of the Trigonometric Ratios	To find the formulas for the following sin \pm sin $\beta ;$ cos $\alpha \pm$ cos β
42	C: 8	Heights and Distances	To be able to use solution of right triangles in solving the problems of heights and distances.

MATHEMATICS HSSC-I ($2^{\text {nd }}$ Set)

Table of Specification

Topics						9 0 0 0 0 0 0 0 0 0 0 0 0 0 0										$\begin{aligned} & \text { dQ } \\ & \text { \%ag } \end{aligned}$
Knowledge based	$\begin{aligned} & 1 \mathrm{i}(1) \\ & 2 \mathrm{i}(4) \end{aligned}$	$\begin{aligned} & 1 \mathrm{ii}(1) \\ & 2 \mathrm{ii}(4) \end{aligned}$		$\begin{gathered} 4(8) \\ 2 \mathrm{iv}(2) \end{gathered}$	$\begin{aligned} & \text { 1vi(1) } \\ & 2 \mathrm{vi}(4) \end{aligned}$		$\begin{gathered} \text { 1ix(0.5) } \\ 1 \mathrm{x}(1) \end{gathered}$	$\begin{gathered} \text { 1xi(1) } \\ 6(8) \\ 2 x(4) \\ \hline \end{gathered}$			2xiii(2)	1xvii(1)		$1 \mathrm{xx}(1)$	43.5	32.95\%
Comprehension based			$\begin{gathered} \text { 1iii(1) } \\ 2 \mathrm{iii}(4) \\ 3(8) \end{gathered}$	$\begin{aligned} & 2 \mathrm{iv}(2) \\ & 2 \mathrm{v}(4) \\ & 1 \mathrm{v}(1) \end{aligned}$		$\begin{gathered} \hline 5(8) \\ \text { 1vii(1) } \\ \text { 1viii(1) } \\ \text { 2vii(4) } \\ \text { 2viii(4) } \\ \hline \end{gathered}$		1xii(1)		$\begin{gathered} 1 \operatorname{xiv}(1) \\ 2 \times \operatorname{xii}(4) \\ 7(8) \\ 1 \operatorname{xv}(1) \end{gathered}$		1xviii(1)	$\begin{aligned} & 2 \mathrm{xv}(4) \\ & 1 \mathrm{xix}(1) \end{aligned}$	$2 \mathrm{xvi}(4)$	63	47.73\%
Application based				$\operatorname{liv}(1)$			$\begin{gathered} \hline 2 \mathrm{ix}(4) \\ 1 \mathrm{ix}(0.5) \end{gathered}$		$\begin{gathered} \hline \text { 2xi(4) } \\ \text { 1xiii(1) } \end{gathered}$		$\begin{aligned} & \hline \text { 1xvi(1) } \\ & \text { 2xiii(2) } \end{aligned}$	$\begin{gathered} \hline 8(8) \\ 2 \operatorname{xiv}(4) \end{gathered}$			25.5	19.32\%
Total marks for each topic	05	05	13	18	05	18	6	14	05	14	05	14	05	05	132	100\%

KEY:
1(1)(01)
Question No (Part No.) (Allocated Marks)
Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:
a) 30% knowledge based.
b) 50% understanding based.
c) 20% application based.
(ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
(iii) The level of difficulty of the paper is approximately as follows:
a) 40% easy
b) 40% moderate
c) 20% difficult

