Version No.					ROLL NUMBER							
0	0	0	0		0	0	0	0	0	0	0	
1	1	1	1		1	1	1	1	1	1	1	
2	2	2	2		2	2	2	2	2	2	2	
3	3	3	3		3	3	3	3	3	3	3	Answer Sheet No
4	4	4	4		4	4	4	4	4	4	4	
(5)	(5)	5	(5)		5	5	(5)	(5)	(5)	(5)	(5)	Sign. of Candidate
6	6	6	6		6	6	6	6	6	6	6	
7	7	7	7		7	7	7	7	7	7	7	
8	8	8	8		8	8	8	8	8	8	8	Sign. of Invigilator
9	9	9	9		9	9	9	9	9	9	9	
					CF							^d Set)
									,		ks 17) nutes	
a .:					4.1							1 42 11 11
												answered on this page and handed allowed. Do not use lead pencil.
Q.1	Fil	l the	releva	nt b	ubb	le for	each	part	t. Eac	ch pa	rt car	ries one mark.
	(1)							7		_		ng reaction, predict the maximum
	` '	3	ield o	f Fe	that	can b	e obt	ained	with	;		71
			Fe ₂ O ₃ -			of Fe ₂		2Fe		O ₂ B.	2 r	mole of Fe_2O_3
			Z.			_	_	Č		D.		$\begin{array}{ccc} \text{mole of } \text{Fe}_2\text{O}_3 & \bigcirc \end{array}$
	(2)	(Duote	what	t Mos	selv v	vas al	ble to	detei	mine	with	the discovery of X-Rays :
	(=)		4.			-					etal at	
			3.							_	netal a	atom
			C. O.						_	etal a tal at		atom O
	(3)	(Catego	orize	the p	olar : 	mole	cule a	mong	g the 1	follow	ving: H
		A	A .	CI-	c	-CI		\bigcirc		B.	H	ı—С-н
					C	I						Н
				н_	 _N_	_⊔				Ъ	_	
		,	C.		H	''		\bigcirc		D.	0)=C=0
	241		T 71			,,,,						. 1 . 11
	(4)		What a 4.							al gas ssure		nave ideally:
			3.			_			_	rature		0
			C.	Lov	v pre	ssure	and l	high t	empe	ratur	e	Ō
		I	Э.	Lov	v tem	pera	ture a			essur	e	\bigcirc
								rag	e 1 o	13		

(5)	A. Force of attractionB. Elastic collisions bC. Vander Waal's for	exert pressure on the walls of their container. Predict it is due to: Force of attraction between their molecules Elastic collisions between their molecules Vander Waal's forces between their molecules Force of repulsion between their molecules										
(6)	Label which of the follow EXCEPT :	ing valence she	ell electronic configur	ations are correct								
	A.	O B.	2s 2px 2py 2pz	0								
	A.	O D.	2s 2px 2py 2pz	0								
(7)	Light emitted or absorbed energy of photon?	in form of ene	rgy packets called pho	otons. What is the								
	A. E=hC	(B.	$E = hc/\lambda$	\bigcirc								
	C. $E = h\lambda$	Ö D.	$E = hc/\lambda$ $E = c/\lambda$	Ö								
(8)	Predict which one has high	hest boiling po	int among the followi	ng:								
(0)	A. Helium (He)	() B.	-	s .								
	C. Argon (Ar)		Krypton (Kr)	Ö								
(9)	Identify the temperature a	t which water (H ₂ O) exhibits lower d	lensity:								
())	A. 34°C	B.	24°C									
	C. 14°C	O D.	4°C	Ö								
(10)	Analyze what is true for the	ne following ch	emical reaction?									
(10)	$H_{2(g)} + I_{2(g)}$	_	emical reaction:									
	A. $k_p > k_c$		$k_n < k_c$	\bigcirc								
	$C. k_p = k_n$	O D.	$k_p > k_n$	\circ								
(11)	An oaid V agasidanad to b			Disconistion								
(11)	An acid X considered to b constant (K _a) is:	e stronger one,	when the value of its	Dissociation								
	A. 1.8×10^{-16}	○ B.	1.0×10^{-4}	\circ								
	C. 1.0×10^9	O D.	1.0×10^{10}	Ö								
(12)	For a chemical reaction A Rate = $k[O_3]^2[O_2]^{-1}$ Distinguish the INCORR	•	C									
	Distinguish the INCORRECT statement about the reaction A : A. The rate of reaction increases four time when [O ₃] is doubled and [O ₂] is											
	kept constant.											
	B. The rate of reaction increases twice when $[O_2]$ is doubled and $[O_3]$ is kept											
	constant											
	C. The rate of reaction constant.	n becomes half	when $[O_2]$ is doubled	and $[O_3]$ is kept								
	D. The overall order of	of this reaction	A is First order.	\circ								
(13)	Identify the temperature a	t which the col	ubility of CuSO. in w	ater is maximum at:								
(13)	A. 80°C	B.	90°C	awi is maximum at:								
	C. 100°C	O D.	110°C	$\bigcup_{i=1}^{n}$								
	. 100 0	Page 2 of 3										

(14)	If the following reaction is performed at STP, predict which one of the following statement is correct for this reaction? $CO_2(g) \longrightarrow C_{(s)} + O_{2(g)}$												
	A.	Δ H is positive and the temperature of surrounding is increased.	\bigcirc										
	В.	•											
	 C. ΔH is negative and the temperature of surrounding is increased. 												
	D.	Δ H is negative and the temperature of surrounding is decreased.	000										
(15)	In the	In the following reaction, quote the correct statement:											
	$Ca(s) + Cl_2(g) \longrightarrow CaCl_2$												
	A.	Ca is oxidizing agent \bigcirc B. Cl_2 is reducing agent	\bigcirc										
	C.	Ca is reducing agent \bigcirc D. CaCl ₂ is reducing agent	Ö										
(16)	what	sider the following general chemical reaction at equilibrium. If it's K is the best statement for the chemical reaction.	Cc = 1,										
	A.	Concentration of reactant = Concentration of product											
	В.	Concentration of reactant > Concentration of product											
	C.	Rate of forward reaction > Rate of backward reaction											
	D.	Rate of forward reaction < Rate of backward reaction											
	D.	Rate of followard feaction < Rate of backward feaction	O										
(17)	When two atoms bond with each other through overlapping of their sp ³ hybrid orbitals. Predict which one of the following statements best describes the nature												
	of the bond between these atoms?												
	A.	A. This is a Pi (π) covalent bond											
	B.	This is a Sigma (σ) covalent bond											
	C.	This is ionic bond											
	D. This is hydrogen bond.												

Federal Board HSSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

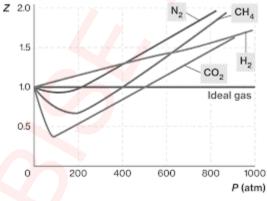
Time allowed: 2.35 hours Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$


i. $8.7X10^{24}$ H₂ molecules are produced by the reaction of zinc and 30% W/W H₂SO₄ solution of density 1.25g/ cm³. For the following reaction:

 $Zn_{(s)} + H_2SO_{4(aq)} \longrightarrow H_{2(g)} + ZnSO_{4(s)}$ Calculate the volume of sulphuric acid solution used.? (Zn = 65, O = 16, S = 32, H = 1 g/mol)

- ii. Briefly describe the miscibility of phenol and water system.
- iii. Describe briefly Zeeman and Stark effect on Bohr atomic model.
- iv. List the quantum numbers value of 5p.
- v. Interpret the change in the bond energy in the following.

Bonds	C-F	C-Cl	C-Br	C-I
Energy KJ/mol	485	329	276	240

- vi. Demonstrate the values of bond pair, lone pair and total electron pair in AsH₃ by VSEPR theory, and draw its structure.
- vii. Show by derivation the unit of density in the expression $d = \frac{PM}{RT}$ when R = 0.0821atm $dm^3mol^{-1}k^{-1}$.
- viii. Deviation from ideal behavior is shown in following graph at 25°C. Sketch the deviation from ideal behavior at 5°C.

- ix. A gas collected over water at 10^oC and 873 torr. If gas occupies 90cm³, calculate the volume of dry gas at STP when aqueous tension is 9.2torr.
- x. Describe the surface tension of the given solvents in term of intermolecular forces.

Solvent	Surface Tension
Water (H ₂ O)	7.275×10^2
Hexane (C_6H_{14})	1.84×10^2

- xi. Ice floats at the surface of the water. Tabulate its three advantages.
- xiii. Calculate p^H of 1x10⁻³M Fe(OH)₃.
- xiv. Briefly explain buffer action with the help of CH₃COOH and CH₃COONa.
- xv. Discuss briefly the colligative property of $C_{12}H_{22}O_{11}$ and $CO(NH_2)_2$.
- xvi. Prove first law of thermodynamics and show that $\Delta E = q_v$.
- xvii. Differentiate between exothermic and endothermic with thermochemical equations.
- xviii. Briefly describe cleavage planes and habit of crystal.
- xix. Complete the reaction on the bases of reduction potentials of $Pb^{+2}/Pb = -0.36v$ and $Fe^{+2}/Fe = -0.44v$ $PbSO_4 + Fe$
- ex. Calculate the energy of ${}_{3}{}^{7}Li^{+2}$ for Balmer series when electron jumps from n=5.

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. $CH_{4(g)} + 4Cl_{2(g)} \rightleftharpoons CCl_{4(l)} + 4HCl_{(g)}$ Derive Kc expression at equilibrium of given reaction. (06)
 - b. Describe that increase in collision energy by increasing the temperature can improve the collision frequency. (3+2+2)
- Q.4 a. Under what conditions synthesis of ammonia will give maximum yield by Haber's process. (2+2+2)
 - b. Describe dissolution of KCl and $C_6H_{12}O_6$ in water (4+3)
- Q.5 a. Demonstrate the reactions that occur in lead storage battery when it is recharged.
 - b. Sulphuric acid can be prepared by contact process using following reactions when one ton (1000kg) sulphur is used then how much SO₃ will be produced and how much oxygen is used? (3+4)

$$S + O_2$$
 \longrightarrow SO_2 $2SO_2 + O_2$ \longrightarrow $2SO_3$ $(S=32, O=16)$

* * * * *

CHEMISTRY HSSC-I (3rd Set) Student Learning Outcomes Alignment Chart

SECTION A

0.1

- (1) Construct mole ratio from balanced equations for use as conversion factor in stochiometric problems.
- (2) Explain production, properties, types and uses of X-rays.
- (3) Explain the sequence of filling of electrons in many electron atoms.
- (4) Define photon as a unit of radiation energy.
- (5) Predict the molecular polarity from the shapes of molecules atom. (Analyzing)
- (6) Describe the features of sigma and pi bonds.
- (7) Distinguish between real and ideal gases.
- (8) Use Kinetic Theory to explain gas pressure.
- (9) Explain applications of dipole-dipole forces, hydrogen bonding and London forces.
- (10) Explain the low density and high heat of fusion of ice.
- (11) Define and explain molecular and metallic solids.
- (12) Relate the equilibrium expression in terms of concentration, partial pressure, number of moles and mole fraction.
- (13) State the necessary conditions for equilibrium and the ways that equilibrium can be recognized.
- (14) Use the extent of ionization and the acid dissociation constant, Ka, to distinguish between strong and weak acids.
- (15) Explain and use the terms rate of reaction, rate equation, order of reaction, rate constant and rate determining step.
- (16) Explain the effect of temperature on solubility and interpret the solubility graph.
- (17) Classify reactions as exothermic or endothermic.
- (18) Give the characteristics of a Redox reaction.

SECTION-B

Q.2

- i. Perform stoichiometric calculations with balanced equations using moles, representative particles, masses and volumes of gases (at STP).
- ii. Explain the nature of solutions in liquid phase giving examples of completely miscible, partially miscible and immiscible liquid-liquid solutions.
- iii. Relate the discrete-line spectrum of hydrogen to energy levels of electrons in the hydrogen atom
- iv. Distinguish among principal energy levels, energy sub levels, and atomic orbitals.
- v. Define bond energies and explain how they can be used to compare bond strengths of different chemical bonds
- vi. Use VSEPR and VBT theories to describe the shapes of simple covalent molecules.
- vii. Derive Ideal Gas Equation using Boyle's, Charles' and Avogadro's law.
- viii. Explain why real gases deviate from the gas laws
- ix. Derive Ideal Gas Equation using Boyle's, Charles' and Avogadro's law
- x. Explain physical properties of liquids such as evaporation, vapour pressure, boiling point, viscosity and surface tension
- xi. Use the concept of Hydrogen bonding to explain the following properties of water: high surface tension, high specific heat, low vapor pressure, high heat of vaporization, and

- high boiling point. And anomalous behavior of water when its density shows maximum at 4 degree centigrade
- xii. Define salts, conjugate acids and conjugate bases.
- xiii. Explain ionization constant of water and calculate pH and pOH in aqueous medium using given Kw values.
- xiv. Define a buffer, and show with equations how a buffer system works.
- xv. Define the terms colligative. Explain on a particle basis how the addition of a solute to a pure solvent causes an elevation of the boiling point and depression of the freezing point of the resultant solution.
- xvi. Relate change in internal energy of a system with thermal energy at constant temperature and constant pressure.
- xvii. Classify reactions as exothermic or endothermic.
- xviii. Describe properties of crystalline solids like geometrical shape, melting point, cleavage planes, habit of a crystal, crystal growth, anisotropy, symmetry, isomorphism, polymorphism, allotropy and transition temperature.
- xix. Use the activity series of metals to predict the products of single replacement reactions.
- xx. Relate the discrete-line spectrum of hydrogen to energy levels of electrons in the hydrogen atom.

SECTION-C

- **Q.3** a. Write the equilibrium expression for a given chemical reaction.
 - b. Use the collision theory to explain how the rate of a chemical reaction is influenced by the temperature, concentration, size of molecules
- Q.4 a. Explain industrial applications of Le Chatelier's Principle using Haber's process as an example.
 - b. Distinguish between the solvation of ionic species and molecular substances.
- **Q.5** a. Explain how a lead storage battery produces electricity.
 - b. Perform stoichiometric calculations with balanced equations using moles, representative particles, masses and volumes of gases (at STP).

CHEMISTRY HSSC-I (3rd Set)

TABLE OF SPECIFICATION

Topics/S ubtopics	Stoichiomet ry 1	Atomic structure 2	Theories of covalent bonding 3	States of matter- Gases 4	States of matter- Liquids 5		Chemical Equilibriu m 7	Acids Bases and salts 8	Chemical kinetics	Solutions and colloids 10	Thermoche mistry 11	12	Total marks for each Assessme nt Objective	%age
(Knowle dge based)		1(2)(1) 1(6)(1) 1(7)(1) 2 iii(3) 2 iv(3)	1(17)(1)	1(4)(1) 2 viii(3)	2 x(3) 2 xi(3)	2 xviii(3)	1(16)(1)	1(11)(1)	3 b(7)	2 ii(3)		1(15)(1)	36	31%
(Underst anding based)			2 v(3) 2 vi(3)	1(5)(1) 2 vii(3)	1(8)(1)	1(9)(1)	3 a(6) 4 a(6)	2 xii(3) 2 xiv(3)		1(13)(1) 2 xv(3) 4 b(7)	1(14)(1) 2 xvi(3) 2 xvii(3)	2 xix(3) 5 a(6)	57	49.1%
ion	1(1)(1) 2 i(3) 5 b(7)	2 xx(3)	1(3)(1)	2 ix(3)			1(10)(1)	2 xiii(3)	1(12)(1)				23	19.8%
Total marks for each Topic/Su btopic	11	12	08	11	07	04	14	10	08	14	07	10	116	100%

KEY:

1(1)(1)

Question No. (Part No.) (Allocated Marks)

Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:

- a) 30% knowledge based.
- b) 50% understanding based.
- c) 20% application based.
- (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
- (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult