Version No.				R	OLL	NU	MBF	ER		WERMEDIATE AND SPEC		
												and the second se
0	0	0	0	0	0	0	0	0	0	0	0	THE REPORT OF TH
1	1	1	1	1)	1	1	1	1	1	1	1	SLAMABAD.
2	2	2	2	2)	2	2	2	2	2	2	2	
3	3	3	3	3)	3	3	3	3	3	3	3	Answer Sheet No
4	4	4	4	4)	4	4	4	4	4	4	4	
(5)	5	(5)	(5)	5)	(5)	5	5	5	5	5	(5)	Sign. of Candidate
6	6	6	6	6)	6	6	6	6	6	6	6	
7	7	$\overline{7}$	$\overline{7}$	7)	$\overline{7}$	(7)	(7)	7	(7)	(7)	(7)	
8	8	8	8	8)	8	8	8	8	8	8	8	Sign. of Invigilator
9	9	9	9	9)	9	9	9	9	9	9	9	

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

(1)	Whic	h one of the follo	wing compo	ounds is	formed by t	he reaction	of Aluminium
	Hydroxide Al(OH) ₃ with Sulphuric Acid (H_2SO_4)?						
	A.	$Al(SO_4)_3$		B.	Al ₂ CO ₃		

A.	$AI(SO_4)_3$	В.	AI_2CO_3
C.	$Al_2(SO_4)_3$	D.	AlCl ₃

(2) Marble Buildings are disintegrated by acid rain because of the reaction of acid with:

A.	Calcium Sulphate	В.	Calcium Nitrate
a		D	011 011

- C. Calcium Carbonate D. Calcium Oxalate
- (3) Dipeptide is formed by joining of two molecules of:
 - A. Amino acids B. Alcohols
 - C. Carboxylic acids D. Amines

(4) Two products obtained from the carbonating tower during the Solvay Process are:
 A. NH₄Cl and CO₂
 B. NH₄HCO₂ and NH₄Cl

C. NaHCO₃ and NH₄Cl D. NaHCO₃ and NH₃

(5) The end product of the reaction of acetylene with concentrated alkaline $KMnO_4$ is oxalic acid. In this reaction acetylene undergoes:

A.ReductionB.OxidationC.SubstitutionD.Rearrangement

(6) One mole of an unsaturated hydrocarbon reacts with one mole of hydrogen to form a saturated compound. Predict the formula of unsaturated compound. A. $C_3 H_4$ B. $C_6 H_{12}$

 $C. \qquad C_4 \, H_{10} \qquad \qquad D. \qquad C_7 \, H_{16}$

(7)	F ⁻ is a A. B. C. D.	base, because it: Contains OH group Ionizes in water to give OH ⁻ Can accept an election pair Can accept proton	ions	
(8)	Which	one of the following compou	nds is a	n aldehyde?
	A.	CH ₃ - CH ₂ - OH	B.	CH ₃ - COOH
	C.	CH ₃ - CHO	D.	CH ₃ - COCH ₃
(9)	The nF	H of 10 ⁻³ M aqueous solution of	f NaOH	l is:
())	A	3	B	11
	C.	2	D.	9
(10)	Which fuel?	one of the following pollutan	t is NO '	T produced by the burning of fossil
	A.	СО	B.	NO _x
	C.	CFCs	D.	SO _x
(11)	For a r	eversible reaction given below	v the un	it of Kc is:
	$2SO_2$	$+ O_2 \xrightarrow{3} 2SO_3$.13
	A.	mol ⁻¹ dm ³	B.	$mol^{-1} dm^{-3}$
	C.	mol.dm ⁻³	D.	mol.dm ³
(12)	The co	omposition of matte produced	during t	he metallurgy of copper is:
	A.	FeSiO ₃	B.	FeS & Cu_2S
	~		_	

C. Cu_2O & FeS D. Cu_2O & Cu_2S

Time allowed: 2.40 hours

Total Marks: 53

Note:	Answe Write	ver all parts from Section 'B' and all questions from Section 'C' on the E-sho e your answers on the allotted/given spaces.	eet.
		SECTION – B (Marks 33)	
Q.2	Attem	npt all parts from the following. All parts carry equal marks. $(11 \times 3 = 3)$	33)
	i.	Classify the following substances as Lewis acids or Lewis bases. $(1+1+1)$	+1)
		a. AlBr ₃ b. CH_3 - CH_2 - OH c. CN^{-1}	
		Write down balanced chemical equations showing the formation of salt: $(1.5+1)$	(.5)
		a. reaction of HCl acid with Al metalb. reaction of HCl acid with calcium carbonate	
	ii.	Write the name and formulas of the three Nitrogen containing fertilizers. $(1+1+1)$	-1)
	iii.	What is slaked lime? How is it produced during by Solvay process? (1-	+2)
		OR Define the following with examples:	1)
		a. Lipids b. Fats c. Oils	-1)
	iv. v	Describe ion exchange method for removal of hardness of water. For the given reversible reaction equilibrium concentration is:	(3)
	••	$N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)} $ $(1.5+1)$.5)
		$N_2 = 0.602 \text{mol/dm}^{-3}$	
		$H_2 = 0.420 \text{ mol/dm}^2$ and $NH_3 = 0.113 \text{ mol/dm}^3$.	
	vi.	Calculate the value of Kc and determine Kc unit. How has Le-Chatlier's principle made it possible to get maximum amount of	
		(1+1+	-1)
		OR Concentration of an aquas solution of potassium hydroxide 1.0×10^{-3} mol/dm ³ .	
		(1+1+	-1)
	vii.	Write the structural formulas of the following:(1+1-1)a.n-Heptaneb.Methanalc.Methanoic acid	-1)

- viii. Differentiate between homocyclic and heterocyclic compound with the help of structural formula. (1.5+1.5)
- ix. Write two methods of the preparation of propane. Give chemical equations with conditions. (1.5+1.5)
- x. How will you differentiate between Ethane and Ethene using a chemical reaction?

(1+2)

OR

Identify A and B in the following chemical reaction:		(1.5+1.5)
$CH_3 - C \equiv CH + Cl_2 \underline{ccl_4} A$		
$A + Cl_2$ CCl ₄ B		

xi. Discuss three ways by which global warming can be decreased? (1+1+1) OR Write three disadvantages of acid rain. (1+1+1)

SECTION – C (Marks 20)

Note: Attempt all questions. Marks of each question are given within brackets.

Q.3 State law of mass action. Derive Kc expression for the following reaction:

(2+4)

 $4\text{HCl}(g) + O_2(g) \implies 2\text{Cl}_2(g) + 2\text{H}_2O(g)$

OR

Explain Lowry-Bronsted concept of acid and base along with two examples of each. (1.5+1.5+1.5)

Identify Lowery – Bronsted acids and bases in the following reactions. Justify your answer. (2+1+1+1+1)

(i) $HCO_3^- + H_2O(1) = CO_3^{-2}(aq) + H_3O^+(aq)$

(ii)
$$NH_3(g) + HNO_3 \implies NH_4NO$$

(iii)
$$F^- + BF_3 \longrightarrow BF_4^-$$

- (iv) $CH_3COOH + H_2O(1) \rightleftharpoons CH_3COO^- + H_3O^+(aq)$
- Q.4 What is hard water? Explain the two methods for removing temporary hardness of water. (2+2+2)

OR

What is nucleic Acid? Describe structure and function of DNA. (1+2.5+2.5)

Q.5 Write importance of functional group? Identify the functional group in the following organic compound: (2+1+1) (i) CH₃COCH₃ (ii) CH₃COOH

OR

How will you convert propene into propyne? Name the products formed in each step. (1+1+1+2)

Q.6 Enlist four fractions obtained by fractional distillation of petroleum.

(1+1+1+1)