

Answer Sheet No. \qquad

Sign. of Candidate \qquad

Sign. of Invigilator \qquad

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.
mATHEMATICS HSSC-II
SECTION - A (Miarks 20) Time allowed: 25 Minutes

Fill the relevant bubble against each question:
(ك كـ

的
A function $f: x \rightarrow y$ defined
by
\bigcirc Linear function \bigcirc
Constant
$\bigcirc \begin{aligned} & \text { Identity } \\ & \text { function }\end{aligned}$
$\bigcirc \begin{aligned} & \text { Implicit } \\ & \text { function }\end{aligned}$

1. $f(x)=a, \forall x \in X, a \in y$ is called:
function
2. If $f(x)=\sqrt{x^{2}-1}$ then Domain of f is:
$\bigcirc(-\infty, \infty)$
$\bigcirc[1, \infty)$
O $[0, \infty)$
$(-\infty,-1] \cup[1, \infty)$

What result occurs in Evaluating
3. $\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{3}-\sqrt{x}}$
$-2 \sqrt{3}$
$2 \sqrt{3}$
〇 $3 \sqrt{2}$
O $3 \sqrt{3}$
If $f(x)=\cos x$, then what is the value of 4. $f^{\prime}\left(\sin ^{-1} 3 x\right)$ is:
$-\sin 3 x$
($-3 x$
$\bigcirc \frac{-3}{\sqrt{1-9 x^{2}}}$
$\bigcirc \frac{3}{\sqrt{1-9 x^{2}}}$
If $f(x)=\ln x^{2}$ then what is the value of
O $\frac{-1}{5}$
$\bigcirc \frac{1}{5}$
$\frac{-2}{5}$
$\bigcirc \frac{2}{5}$
6. $\left(1+x^{2}\right) \frac{d}{d x}\left(\tan ^{-1} x+\cot ^{-1} x\right)=$
$\bigcirc 2$
$\bigcirc \frac{2}{1+x^{2}}$
0
$\bigcirc \frac{-2}{1+x^{2}}$
7. The integral $\int \frac{d x}{x \ln x}$ is equal to:
$\bigcirc \ln x+c$
$\bigcirc \frac{1}{x}+c$
$\ln (\ln x)+c$
$\bigcirc \frac{(\ln x)^{2}}{2}+c$
8. What is the value of k if $\int_{0}^{1}(3 x+k) d x=2$
$\frac{1}{2}$
○ $\frac{-3}{2}$
○ $\frac{-1}{2}$

- $\frac{2}{3}$
What is the area between the x-axis and

9. curve $y=\cos \frac{x}{2}$, from $-\pi$ to π ?
$\bigcirc 1$
$\bigcirc 2$
○ 4
$\bigcirc 8$
The equation of a line $\frac{x}{P \sec \alpha}+\frac{y}{P \operatorname{cosec} \alpha}=1$
SymmetricTwo intercept form of a line Slope intercept Normal form of is called:
equation of a \qquadform of a line a line

For what value of k the lines $k x-2 y+5=0$
\bigcirc
± 1
$\bigcirc 2$
() ± 2
11. and $x-2 k y+3=0$ are parallel line?
The equation of the vertical line through
-5
-6
$\bigcirc 5$
O 6
13. Which one satisfies the inequality $x+2 y<6 \bigcirc(4,1)$
\bigcirc
$(1,3)$
(1,4)
$(3,1)$

What is the length of tangent from $(1,1)$ to
$\bigcirc 1$
$\bigcirc 2$() 4
4. the circle $x^{2}+y^{2}-2 x+3 y+6=0$?

What is the eccentricity of an ellipse 15. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
$\bigcirc \frac{1}{\sqrt{3}}$
$\frac{2}{\sqrt{3}}$
$\frac{\sqrt{3}}{2}$
() $\sqrt{3}$

What is the length of latus rectum of the
16. hyperbola whose equation is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$? $\bigcirc \frac{2}{9}$
$\frac{9}{2}$
○ $\frac{4}{9}$

- $\frac{9}{4}$

17. What is the Directrix of Parabola with vertex
$x+8=0$
($x-8=0$
〇 $x+4=0$
() $x+2=0$
18. at origin and focus at $(8,0)$?

What is the projection of vector $-2 \hat{i}+3 \hat{j}+7 \hat{k} \bigcirc \frac{\sqrt{13}}{5}$
on $2 \hat{j}+\hat{k}$?
$\frac{13}{\sqrt{5}}$
$\bigcirc \frac{5}{\sqrt{13}}$

- $\frac{\sqrt{5}}{13}$

What is the angle between the vectors
19. $2 \bar{i}+\bar{j}+\bar{k},-\bar{i}+2 \bar{j}$ are?
$\frac{\pi}{3}$
$\bigcirc \frac{2 \pi}{3}$
$\bigcirc \frac{\pi}{6}$
$\frac{\pi}{2}$
For what value of α the vectors
$2 \bar{i}, \bar{j}+\bar{k}$ and $\bar{i}+\alpha \bar{j}+2 \bar{k}$ are coplanar?
-2
○ 2
○ 3
() -3

$$
-2 H A-12211-4111(\mathrm{~L})=
$$

NOTE: Attempt any twelve parts from Section ' B ' and any four questions from Section ' C ' on the separately provided answer book. Use supplementary answer sheet ie. Sheet-B if required. Write your answers neatly and legibly. Graph paper will be provided on Demand.

SECTION - B (Marks 48)
Q. 2 Attempt any TWELVE parts. All parts carry equal marks.
$(12 \times 4=48)$
(i) For the real valued function, $f(x)$ is defined by $f(x)=\sqrt{x^{3}+4}$ find $f^{-1}(x)$. Also verify $f\left(f^{-1}(x)\right)=x$
(ii) Evaluate $\lim _{x \rightarrow 0} \frac{\operatorname{cosec} x-\cot x}{x}$
(iii) If $y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots . \infty}}}$ prove that $(2 y-1) \frac{d y}{d x}=\cos x$
(iv) Show that $\sin (x+h)=\sin x+h \cos x-\frac{h^{2}}{2!} \sin x-\frac{h^{3}}{3!} \cos x+\ldots$. (by Taylor's Series)
(v) If $y=\sin ^{-1} \frac{x}{a}$ then show that $y_{2}=x\left(a^{2}-x^{2}\right)^{-\frac{3}{2}}$
(vi) Evaluate $\int \frac{d x}{3 x(\ln 3 x)^{4}}$
(vii) Evaluate $\int_{0}^{3} \frac{x^{3}+9 x+3}{x^{2}+9} d x$
(viii) Solve the differential equation $\frac{d y}{d x}+\frac{4 x y}{4 y+2}=x$
(ix) Find an equation of the perpendicular bisector of a line joining the points $A(5,6)$ and $B(8,4)$.
(x) Find the value of k such that the lines $2 x-2 y+2=0,3 x-5 y-1=0$ and $2 x+k y+8=0$ meet at a point.
(xi) Graph the feasible region of the system of linear inequalities by shading
$5 x+7 y \leq 35,-x+3 y \leq 3, x \geq 0, y \geq 0$
(xii) Find the equation of a circle passing through the points $A(2,3), B(0,2)$ having centre at $3 x+2 y-3=0$
(xiii) Find the equation of Parabola with focus $(3,2)$ and directrix $2 x-y+5=0$.
(xiv) Find the equation of tangent to hyperbola $9 x^{2}-4 y^{2}=36$ parallel to the line $3 x+2 y+7=0$
(xv) Find the scalar ' α ' so that vectors $3 \bar{i}+\alpha \bar{j}+4 \bar{k}$ and $4 \bar{i}+5 \bar{j}+\alpha \bar{k}$ are perpendicular to each other.
(xvi) Find the volume of the tetrahedron whose vertices are $A(-2,1,4), B(3,2,5), C(-3,-5,0), D(5,8,9)$

Note: Attempt any FOUR questions. All questions carry equal marks.
Q. 3 Let $f(x)=\left\{\begin{array}{lll}m x+3 & \text { if } x<3 \\ m+n & \text { if } & x=3 \\ -x+9 & \text { if } & x>3\end{array}\right.$
a. Find $\lim _{x \rightarrow 3} f(x)$ and $\lim _{x \rightarrow 3}+f(x)$
b. Find the $\lim _{x \rightarrow 3} f(x)=f(3)$
c. Find the value of m and n such that $f(x)$ is continuous at $x=3$
d. After finding the values of m and n, sketch the graph of the function
Q. 4 The perimeter of a triangle is 18 centimetres. If one side is of length 8 cm . What are lengths of the other sides for maximum area of a triangle?
a. Find function $f(x)$
b. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$
c. Find the values of $f(x)$ for which has maximum or minimum values?
d. Find the sides of triangle $A B C$
Q. 5 Evaluate the integral $\int \frac{2 x^{2}+5 x+3}{(x-2)^{2}\left(x^{2}+x+1\right)} d x$
a. Resolve $\frac{2 x^{2}+5 x+3}{(x-2)^{2}\left(x^{2}+x+1\right)}$ into Partial fraction
b. After Partial Fraction Integrate the result $\int \frac{2 x^{2}+5 x+3}{(x-2)^{2}\left(x^{2}+x+1\right)} d x$
Q. 6 The diagram shows a triangle ABC where $A(-2,3), B(4,5), C(6,2)$ are vertices of $\triangle A B C$
a. Find the slopes of side $\overline{A B}, \overline{B C}$ and $\overline{A C}$
b. Find the angle between the sides $\overline{A B}$ and $\overline{B C}$ and angle between $\overline{A B}$ and $\overline{A C}$
c. Find the equations of sides $\overline{A B}$ and $\overline{B C}$
d. Find the area of triangle $A B C$ check these three points are collinear

Q. 7 An agent wishes to purchase a number of chairs and tables. He has only Rs. 12000 to invest and has space at most for 28 items. A chair costs him Rs. 480 and a table costs Rs. 300 . His expectation is that he can sell a chair at a profit of Rs. 200 and table at a profit of Rs. 150. Assuming that he can sell all the items that he can buy. How should he invest his money in order to maximize his profit?
Q. 8 Find the Centre, Foci, Eccentricity, Vertices and Equation of directrices of the conic $25 x^{2}+4 y^{2}-250 x-16 y+541=0$

